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Abstract. Given a prime p and cusp forms f1 and f2 on some Γ1(N) that

are eigenforms outside Np and have coefficients in the ring of integers of some
number field K, we consider the problem of deciding whether f1 and f2 have

the same eigenvalues mod pm (where p is a fixed prime of K over p) for Hecke
operators T` at all primes ` - Np.

When the weights of the forms are equal the problem is easily solved via

an easy generalization of a theorem of Sturm. Thus, the main challenge in the
analysis is the case where the forms have different weights. Here, we prove

a number of necessary and sufficient conditions for the existence congruences

mod pm in the above sense.
The prime motivation for this study is the connection to modular mod pm

Galois representations, and we also explain this connection.

1. Introduction

Let N ∈ N and let p be a fixed prime number.
Suppose that we are given cusp forms f1 =

∑
an(f1)qn and f2 =

∑
an(f2)qn

(where q := e2πiz) on Γ1(N) of weights k1 and k2, respectively, and with coefficients
in OK where K is some number field. We will assume in all that follows that f1
and f2 are normalized, i.e., that a1(f1) = a1(f2) = 1.

We say that f1 and f2 are eigenforms outside Np if they are (normalized) eigen-
forms for all Hecke operators T` for primes ` with ` - Np. The corresponding
eigenvalues for such T` acting on fi are then exactly the coefficients a`(fi).

Now fix a prime p of K over p. If fi is an eigenform outside Np, and if m ∈ N,
there is attached to fi a ‘mod pm’ Galois representation:

ρfi,pm : GQ := Gal(Q/Q)→ GL2(OK/pm)

obtained by making the p-adic representation attached to fi integral with coeffi-
cients in OK and then reducing modulo pm. The representation ρfi,pm is unramified
outside Np and we have:

(∗) tr ρfi,pm(Frob`) = (a`(fi) mod pm)

for primes ` - Np.
By a theorem of Carayol, cf. Théorème 1 of [2], combined with the Chebotarev

density theorem, one has that the representation ρfi,pm is determined up to iso-
morphism by the property (∗) for primes ` - Np if we additionally suppose that the
mod p representation ρfi,p is absolutely irreducible.

Imin Chen and Ian Kiming are launching a study of the arithmetic properties
of ‘modular mod pm Galois representations’ as above, cf. [3]. In this connection
we found it natural to prepare the ground for numerical experimentation with

1



2 IMIN CHEN, IAN KIMING AND JONAS B. RASMUSSEN

these representations. As is obvious from the above, the key to this is to obtain
a computationally decidable criterion for when we have a`(f1) ≡ a`(f2) (pm) for
all primes ` - Np, if f1 and f2 as above are given cusp forms that are eigenforms
outside Np.

Now, for the case m = 1, and if the weights k1 and k2 are equal, there is a
well-known theorem of Sturm that gives a necessary and sufficient condition for
the forms to be congruent mod p in the sense that all their Fourier coefficients are
congruent mod p. It turns out to be very easy to generalize Sturm’s theorem to the
cases m > 1 provided that we still have k1 = k2. Then, still under the assumption
that the weights are equal, a simple twisting argument allows us to discuss the case
of eigenforms outside Np.

For various reasons we are interested in also considering cases where the weights
are distinct and this turns out to present a genuinely new challenge.

We study two distinct approaches to this challenge. Under favorable circum-
stances these approaches both result in computable necessary and sufficient condi-
tions for the forms to be ‘congruent mod pm outside Np’ in the above sense.

The first approach is to generalize a theorem of Serre-Katz on p-adic modular
forms, cf. Cor. 4.4.2 of [5] which – under certain restrictions on the levels of the forms
– gives a necessary congruence between the weights for the forms to be congruent
mod pm. In the Serre-Katz theorem one needs to assume that the prime p of the
field K of coefficients is unramified relative to p in Q. We are able to generalize
this theorem to cases where p is ramified over p.

Under certain technical restrictions, in particular that the ramification index
relative to p of the Galois closure of the field K of coefficients is not divisible by p,
and that p is odd, our Theorem 1 results in the desired computable necessary and
sufficient conditions. See Corollary 1 below.

The second approach is via a study of the determinants of the attached mod pm

representations. Again under certain technical restrictions, here notably a restric-
tion on the nebentypus characters of the forms, our Theorem 2 leads to the desired
computable necessary and sufficient conditions. Cf. Corollary 2 below.

It is remarkable that these two rather distinct approaches result – under the
technical restrictions alluded to above – in necessary and sufficient conditions that
are close to being equivalent.

We illustrate the results by a few numerical examples.

1.1. Notation. To formulate our results, let us introduce the following notation:

Define

N ′ :=


N ·

∏
q|N q , if p | N

N · p2 ·
∏
q|N q , if p - N

where the products are over prime divisors q of N . Put:

µ := [SL2(Z) : Γ1(N)] , µ′ := [SL2(Z) : Γ1(N ′)] ,
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and fix the following notation:

m : a natural number,
k := max{k1, k2},
p : a fixed prime of K over p,
e := e(p/p), the ramification index of p over p,
L : Galois closure of K/Q,
e(L, p) : the ramification index of L relative to p in Q,
r : largest power of p dividing the ramification index e(L, p),
` : a (not fixed) prime number.

For a non-negative integer a and a modular form h =
∑
cnq

n on some Γ1(M)
and coefficients cn in OK we define:

ordpa h = inf
{
n | pa - cn

}
,

with the convention that ordpa h =∞ if pa | cn for all n.
We say that f1 and f2 are congruent modulo pa if ordpa(f1 − f2) = ∞, and we

denote this by f1 ≡ f2 (pa).

1.2. Results. The following proposition is the first, basic observation, and is an
easy generalization of a well-known theorem of Sturm, cf. [9].

Proposition 1. Suppose that N is arbitrary, but that f1 and f2 are forms on Γ1(N)
of the same weight k = k1 = k2 and coefficients in OK .

Then ordpm(f1 − f2) > kµ/12 implies f1 ≡ f2 (pm).

Part (i) of the following theorem is a slight generalization of theorems of Serre
and Katz, cf. [8], Théorème 1, [5], Corollary 4.4.2.

Theorem 1. Suppose that f1 and f2 are normalized cusp forms on Γ1(N) of weights
k1 and k2, respectively, and with coefficients in OK .
(i) Assume additionally that p - N and that f1 and f2 are forms on Γ1(N)∩Γ0(p).

Then if f1 ≡ f2 (pm) we have k1 ≡ k2 (ps(p− 1)) with the non-negative integer
s defined as follows:

s :=
{

max{0, dme e − 1− r} , if p ≥ 3
max{0, α(dme e − r)} , if p = 2

with α(u) defined for u ∈ Z as follows:

α(u) :=
{
u− 1 , if u ≤ 2
u− 2 , if u ≥ 3 .

(ii) Let N be arbitrary, but assume 3 | N if p = 2, and 2 | N if p = 3.
Suppose that k1 ≡ k2 (ps(p− 1)).
Then, if a`(f1) ≡ a`(f2) (pm) for all primes ` ≤ kµ′/12 with ` - Np, the following

holds:
If p > 2 and r = 0 we then have

a`(f1) ≡ a`(f2) (pm)

for all primes ` - Np, and this conclusion also holds if p = 2, r = 0, but m ≤ 2e.
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If r > 0 and m ≥ e we have:

a`(f1) ≡ a`(f2) (pe·(s+1))

for all primes ` - Np.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Retain the setup and notation of Theorem 1, and assume that p is
odd, r = 0, that N is prime to p, that 3 | N if p = 2, and 2 | N if p = 3, and that
f1 and f2 are forms on Γ1(N) ∩ Γ0(p).

Then we have a`(f1) ≡ a`(f2) (pm) for all primes ` - Np if and only if this
congruence holds for all primes ` ≤ kµ′/12 with ` - Np and we have the congruence

k1 ≡ k2 (ps(p− 1))

between the weights.

Theorem 2. Suppose that N is arbitrary, but assume that p is odd and that f1
and f2 are forms on Γ1(N) of weights k1 and k2 and with nebentypus characters
ψ1 and ψ2, respectively.

Suppose that f1 and f2 are eigenforms outside Np and have coefficients in OK ,
and that the mod p Galois representation attached to f1 is absolutely irreducible.

View the nebentypus characters ψi as finite order characters on GQ, and let the
order of the character (

ψ2ψ
−1
1 mod pm

)
|Ip

where Ip is an inertia group at p, be pδ · d with d a divisor of p− 1.

(i) If we have a`(f1) ≡ a`(f2) (pm) for all primes with ` - Np then δ ≤ dme e − 1
and we have:

k1 ≡ k2 (mod pd
m
e e−1−δ · (p− 1)/d)

so that in particular, k1 ≡ k2 (mod pd
m
e e−1 · (p− 1)/d) if δ = 0.

(ii) Suppose that
k1 ≡ k2 (mod pd

m
e e−1 · (p− 1)/d) .

Then, if a`(f1) ≡ a`(f2) (pm) for all primes ` ≤ kµ′/12 with ` - Np we have this
congruence for all primes ` - Np.

The following corollary follows immediately from Theorem 2.

Corollary 2. Retain the setup and notation of Theorem 2, and assume that δ = 0.

Then we have a`(f1) ≡ a`(f2) (pm) for all primes ` - Np if and only if this
congruence holds for all primes ` ≤ kµ′/12 with ` - Np and we have the congruence

k1 ≡ k2 (pd
m
e e(p− 1)/d)

between the weights.

Remark: Obtaining results like those in the corollaries, but in more general situ-
ations, for instance with r and δ not necessarily 0, are obvious problems for future
work. It seems fairly clear to us that such questions lead to rather hard problems
that will require some new ideas.
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2. Proofs

Let us first prove Proposition 1 that turns out to be an easy generalization of a
theorem by Sturm, cf. [9].

Proof of Proposition 1: We prove this by induction on m. The case m = 1 is a
theorem of Sturm, cf. Theorem 1 of [9].

Assume that m > 1, and that the theorem is true for powers pa of p with a < m.
Let ϕ = f1 − f2. By assumption we have ordpm ϕ > kµ/12, and therefore also
ordpm−1 ϕ > kµ/12, and hence the induction hypothesis gives ordpm−1 ϕ = ∞.
This means there is a cusp form ψ on Γ1(N) of weight k with coefficients in OK
such that ϕ ∈ pm−1ψ.

Now, since ordpm ϕ > kµ/12, we must have ordp ψ > kµ/12, so that ordp ψ =∞
by the induction hypothesis for m = 1 (i.e., the theorem of Sturm). From this we
conclude that ordpm ϕ =∞, as desired. �

In the following arguments we occasionally need the following simple and prob-
ably well-known lemma.

Lemma 1. Let F ′/F be a finite extension of number fields. Let q be a prime ideal
of F and let Q be a prime ideal of F ′ over q of ramification index ε. Let b be a
positive integer.

Then
Qb ∩ F = qd

b
ε e.

Proof. There is a non-negative integer a such that aε < b ≤ (a+ 1)ε, and then we
have

Q(a+1)ε ⊆ Qb ⊆ Qaε .

From this we get that

qa+1 = Q(a+1)ε ∩ F ⊆ Qb ∩ F ⊆ Qaε ∩ F = qa ,

and so Qb ∩ F is either qa or qa+1.
Assume that Qb ∩ F = qa. Then qa ⊆ Qb, i.e., Qaε ⊆ Qb, and so aε ≥ b, a

contradiction. We conclude that Qb ∩ F = qa+1, and since a + 1 = d bεe by the
definition of a, we are done. �

Part (i) of Theorem 1 can be seen as a generalization of a theorem of Serre and
Katz, cf. Cor. 4.4.2 of [5], and Katz’ theorem is also the main point of the proof.

Proof of part (i) of Theorem 1: Recall that L denotes the Galois closure of K. Let
us fix a prime P over p in the Galois closure L of K. Thus, the ramification index
e(L, p) is the ramification index of e(P/p) of P relative to p in Q. Recall that we
denote the ramification index e(p/p) by e.

Let L0 be the subfield of L corresponding to the inertia group I(P/p). Let p0

be the prime of L0 under P.
We now let I(P/p) act on the fi by acting on their Fourier coefficients. Since

f1 ≡ f2 (pm) we have σ(f1) ≡ σ(f2) (Pm·e(P/p)) for all σ ∈ I(P/p). Letting

F1 =
∑
σ

σ(f1) and F2 =
∑
σ

σ(f2)

with the sums taken over all σ ∈ I(P/p), we therefore obtain

F1 ≡ F2 (Pm·e(P/p)) .
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Now, since F1 and F2 are invariant under the action of I(P/p) they actually
have coefficients in L0, and we therefore have

F1 ≡ F2 (pd
m
e e

0 )

since Pb ∩ L0 = p
d b
e(L,p) e

0 for non-negative integers b, cf. Lemma 1, and because

e(L, p) = e(p/p)e(P/p) = e · e(P/p) .

Now, the extension (L0)p0/Qp of local fields is unramified, and so (L0)p0 is the
field of fractions of the ring W = W (Fpf ) of Witt vectors over Fpf for some f . Since
the Fi have integral coefficients in L0, we can view them as having coefficients in
W .

Now let a be the largest non-negative integer such that all Fourier coefficients
of F1 and F2 are divisible by pa. Then the forms p−aF1 and p−aF2 are cusp forms
on Γ1(N) ∩ Γ0(p) of weights k1 and k2, respectively, and with coefficients in W .
At least one of these forms has a q-expansion that does not reduce to 0 identically
modulo p. Their q-expansions are congruent modulo

p
max{0,dme e−a}
0

and hence also modulo
p
max{0,dme e−r}
0

since certainly a ≤ r because the coefficients of q for both forms Fi equals #I(P/p)
which is just e(L, p).

By a theorem of Katz, cf. Cor. 4.4.2 of [5] we then deduce that

k1 ≡ k2 (ps(p− 1))

where s is given as in the theorem. �

To prepare for the proof of part (ii) of Theorem 1 we need the following lemma.

Let us say that a cusp form h =
∑
cnq

n on Γ1(N) and coefficients in OK is an
eigenform mod pm outside Np if it is normalized and we have T`h ≡ λ`h (pm) for
all primes ` - Np with certain λ` ∈ OK . The same argument as in characteristic 0
shows that in that case, the mod pm eigenvalues λ` are congruent mod pm to the
Fourier coefficients c`.

Lemma 2. Let N be arbitrary and let f1 and f2 be normalized forms of the same
weight k on Γ1(N) and with coefficients in OK .

Suppose that f1 and f2 are eigenforms mod pm outside Np such that

a`(f1) ≡ a`(f2) (pm)

for all primes ` ≤ kµ′/12 with ` - Np.
Then a`(f1) ≡ a`(f2) (pm) for all primes ` - Np.

Proof. We first apply Lemma 4.6.5 of Miyake [6]: By that lemma we obtain from
the fi forms f ′i of weight k on Γ1(N ′) by putting:

f ′i :=
∑

gcd(n,Np)=1

an(fi) · qn .

Here, N ′ is as defined in the notation section. The forms f ′i obviously still have
coefficients in OK .
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Now, since the fi are eigenforms mod pm outside Np, the forms f ′i are also
eigenforms mod pm outside Np, with the same eigenvalues (a`(fi) mod pm).

On the other hand, all Fourier coefficient of the forms f ′i at any index n not
prime to Np vanishes. By our hypotheses we can thus conclude that

ordpm(f ′1 − f ′2) > kµ′/12

and by Proposition 1 this implies f ′1 ≡ f ′2 (pm).
But then a`(f1) ≡ a`(f2) (pm) for all primes ` - Np. �

Proof of part (ii) of Theorem 1. Assume without loss of generality that k2 ≥ k1.
We can then write:

k2 = k1 + t · ps(p− 1)
where t is a non-negative integer.

Now, we have an Eisenstein series E of weight p−1 on Γ1(N) with coefficients in
Z and such that E ≡ 1 (p): If p ≥ 5 we can take E := Ep−1 the standard Eisenstein
series of weight p− 1 on SL2(Z). If p = 2 there is, cf. [4] chap. 4.8 for instance, an
Eisenstein series of weight 1 on Γ1(3):

E := 1− 2
B1,ψ

·
∞∑
n=1

∑
d|n

ψ(d)

 · qn ;

here, ψ is the primitive Dirichlet character of conductor 3, and B1,ψ is the first
Bernoulli number of ψ. One computes B1,ψ = − 1

3 , so that in fact E has coefficients
in Z and reduces to 1 modulo 2. Also, E is a modular form on Γ1(N) as we have
assumed 3 | N if p = 2.

If p = 3 we choose

E := 1 + 24 ·
∞∑
n=1

∑
d|n

d

 · qn ;

this is a modular form of weight 2 on Γ1(2) and hence also on Γ1(N) as we have
2 | N if p = 3. Again, cf. for instance [4], chap. 4.6.

With the above choice of E we have in all cases that E is a modular form of
weight p − 1 on Γ1(N) with coefficients in Z that reduces to 1 modulo p. By
induction on j we see that Ep

j ≡ 1 (pj+1) for all non-negative integers j, and
hence also:

Et·p
s

≡ 1 (ps+1)
that we write as Et·p

s ≡ 1 (pe·(s+1)). Consequently, the form

f̃ := Et·p
s

· f1
satisfies f̃ ≡ f1 (pe·(s+1)). If we call ãn the Fourier coefficients of f̃ we have then

ãn ≡ an(f1) (pe·(s+1))

and thus consequently:
ã` ≡ a`(f2) (pe·(s+1))

for all primes ` ≤ kµ′/12 with ` - Np, because of our hypothesis.
Now, f̃ and f2 are both forms on Γ1(N) of weight k = k2.
Using the definition of s one checks that if r > 0 and m ≥ e then e · (s+ 1) ≤ m

in all cases.
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Also, e · (s+ 1) ≥ m if either p > 2 and r = 0, or if p = 2, r = 0, but m ≤ 2e.
As f1 is an eigenform mod pm outside Np, we can then conclude that f̃ and f2

are both eigenforms mod pe·(s+1) outside Np, if r > 0 and m ≥ e. In this case,
Lemma 2 then implies that

ã` ≡ a`(f2) (pe·(s+1))

and hence also
a`(f1) ≡ a`(f2) (pe·(s+1))

for all primes ` - Np.
If either p > 2 and r = 0, or if p = 2, r = 0, but m ≤ 2e, we have that f̃ and f2

are both eigenforms mod pm outside Np, and then Lemma 2 gives us that

ã` ≡ a`(f2) (pm)

and hence also
a`(f1) ≡ a`(f2)

for all primes ` - Np. �

Proof of Theorem 2: Proof of part (i): Consider the representations ρfi,pm attached
to the forms fi.

Since a`(f1) ≡ a`(f2) (pm) for all primes ` - Np we can conclude by Chebotarev’s
density theorem that the representations ρf1,pm and ρf2,pm have the same traces. As
ρf1,p is assumed absolutely irreducible, Théorème 1 of Carayol [2] then implies that
ρf1,pm and ρf2,pm are isomorphic. Hence, the determinants of these representations
are also isomorphic. These determinants are:

det ρfi,pm =
(
ψi · χki−1 mod pm

)
where χ denotes the p-adic cyclotomic character χ : GQ → Z×p , and the nebentypus
characters ψi are now seen as finite order characters on GQ. Observe that the
characters ψi take values in OK so that it makes sense to reduce them mod pm.
Also, reducing χ mod pm is to be taken in the obvious sense.

We can now deduce that(
ψ2ψ

−1
1 mod pm

)
|Ip

= (χ mod pm)k1−k2|Ip .

Now let us view via local class field theory the character (χ mod pm)|Ip as a
character on Z×p . As such it factors through (Z/Zpdme e)× and has order

pd
m
e e−1 · (p− 1) ;

cf. Lemma 1. By definition, the character
(
ψ2ψ

−1
1 mod pm

)
|Ip

has order pδ · d with

d a divisor of p − 1. Hence, first we see that pδ · d is a divisor of pd
m
e e−1 · (p − 1)

which implies that δ ≤ dme e−1. Secondly, we then conclude that k1−k2 is divisible
by pd

m
e e−1−δ · (p− 1)/d as desired.

Proof of part (ii): Observe first the following. If p - N then upon replacing N by Np
and then calculating µ′ we end up with the same number µ′ as had we calculated
it from N . And of course our forms are also forms on Γ1(Np).

This means that we may well assume that N is divisible by p, – our hypotheses
remain unchanged when N is replaced by Np if N is not divisible by p.

In particular, we may assume that the group Γ1(N) is contained in Γ1(p).
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Now assume without loss of generality that k2 ≥ k1. Our hypotheses imply that
we can then write:

k2 = k1 + t · pdme e−1 · (p− 1)/d
with t a non-negative integer.

Since p is odd there is a certain Eisenstein series E on Γ1(p) of weight

κ := (p− 1)/d

and p′-adically integral coefficients in the field Q(µp−1) of (p− 1)’st roots of unity
with p′ a prime of Q(µp−1) over p, and which reduces to 1 modulo p′: E is the form
derived from

G := L(1− κ, ω−κ)/2 +
∞∑
n=1

∑
d|n

ω−κ(d) · dκ−1


by scaling so that the constant term is 1. Here, ω is the character that becomes the
Teichmüller character when viewed as taking values in Z×p . Cf. Serre, [8], Lemme
10, and Ribet, [7], §2.

Now view E as having coefficients in the compositum M of K and Q(µp−1).
Pick a prime p1 of M over p. Then the ramification index of p1 relative to p is e.
We deduce that

Ep
dm
e
e−1·t ≡ 1 mod pm1

and so f̃ := f1 · Ep
dm
e
e−1·t ≡ f1 mod pm1 . As now f̃ is a form on Γ1(N) (as N is

divisible by p and E is on Γ1(p)) of weight

k1 + pd
m
e e−1 · t · κ = k2

we can finish the argument in the same way as in the proof of part (ii) of Theorem
1. �

3. Examples

We used the mathematics software program MAGMA [1] to find examples il-
lustrating Theorem 1. We looked for examples of higher congruences and where p
is ramified in the field of coefficients. In the notation of this paper, what we are
looking for are situations where e > 1 and s ≥ 1. Here are 2 such examples.

We start with
f1 = q − 8q4 + 20q7 + · · · ,

the (normalized) cusp form on Γ0(9) of weight 4 with integral coefficients, and look
for congruences of the coefficients of f1 and f2 modulo powers of a prime above 5,
for a form f2 of weight k2 satisfying k2 ≡ 4 (5 · (5− 1)).

The smallest possible choice of weight for f2 is k2 = 24. There is a newform f2 on
Γ0(9) of weight 24 with coefficients in the number field K = Q(α) with α a root of
x4− 29258x2 + 97377280. The prime 5 is ramified in K and has the decomposition
5OK = p2p2.

We have k = 24, N = 9, N ′ = 675 and µ′ = 1080, and we find that a`(f1) ≡
a`(f2) (p3) for primes ` ≤ kµ′/12 = 2160 with ` 6= 3, 5.

Since [K : Q] = 4, the Galois closure L of K satisfies [L : Q] | 24 (in fact
[L : Q] = 8 in this case). This shows that 5 - e(L, 5), i.e., r = 0. Since we also have
m = 3 and e = e(p/5) = 2, we get s = 1 as desired. By Theorem 1 we conclude
that a`(f1) ≡ a`(f2) (p3) for all primes ` 6= 3, 5.



10 IMIN CHEN, IAN KIMING AND JONAS B. RASMUSSEN

Similarly we find a newform f3 on Γ0(9) of weight k3 = 44 with coefficients in a
number field K ′ = Q(β) with β a root of

x8 − 438896x6 + 60873718294x4 − 2968020622607040x2 + 40426030666768772025 .

As before 5 is ramified in K ′ and has the decomposition 5OK′ = p4p2
2p

2
3, and

thus e = 4. One finds that a`(f1) ≡ a`(f3) (p5) for primes ` ≤ k2µ
′/12 = 3960

with ` 6= 3, 5. The Galois closure L′ of K ′ satisfies [L′ : Q] = 384 6≡ 0 (5), which
again implies r = 0. With m = 5 we have s = 1 and conclude by Theorem 1 that
a`(f1) ≡ a`(f3) (p5) for all primes ` 6= 3, 5.

We are developing a larger database of similar examples. This will be reported
on elsewhere.
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