
EXPLICIT ISOGENY THEOREMS FOR DRINFELD MODULES

IMIN CHEN∗ AND YOONJIN LEE∗∗

Abstract. Let F = Fq(T ), A = Fq[T ]. Given two non-isogenous rank r Drinfeld
A-modules φ and φ′ over K, where K is a finite extension of F , we obtain a partially
explicit upper bound (dependent only on φ and φ′) on the degree of primes ℘ of
K such that P℘(φ) 6= P℘(φ′), where P℘(∗) denotes the characteristic polynomial of
Frobenius at ℘ on a Tate module of ∗. The bounds are completely explicit in terms of
the defining coefficients of φ and φ′, except for one term, which can be made explicit
in the case of r = 2. An ingredient in the proof of the partially explicit isogeny
theorem for general rank is an explicit bound for the different divisor of torsion
fields of Drinfeld modules which detects primes of potentially good reduction.

Our results are a Drinfeld module analogue of [16], but the results we obtain are
unconditional because GRH for function fields holds.

1. Introduction

Let A = Fq[T ], F = Fq(T ), F be a fixed algebraic closure of F , K a finite extension
of F in F , K the algebraic closure of K in F , O the ring of integers of K, and Fq a
finite field of order q.

By a prime ℘ (or place) of K, we mean a discrete valuation ring R with field of
fractions K and maximal ideal ℘, and v denotes the discrete valuation associated to
a prime ℘ of K. For each place v of K, we fix a choice of Kv, and extend v to Kv,
which by abuse of notation, we also call v. Also, when we speak of a finite extension
of Kv, we assume they are initially given as subfields of Kv.

Let ∞ be the infinite prime of F with corresponding discrete valuation v∞(f/g) =
deg g−deg f, where f, g ∈ A. Let SK∞ be the set of the infinite primes of K lying over
∞, and let ∞̄ ∈ SK∞ have corresponding discrete valuation v∞̄.

Let τ be the map which raises an element to its q-th power. A Drinfeld A-module
φ over K is given by an Fq-algebra homomorphism i : A → K and an Fq-algebra
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homomorphism
φ : A→ K{τ}

such that φa has constant term i(a) for any a ∈ A, and the image of φ is not contained
in K.

A rank r Drinfeld A-module φ over K is completely determined by

φT = i(T ) + a1(φ)τ + · · ·+ ar−1(φ)τ r−1 + ∆(φ)τ r,

where ai(φ), ar = ∆(φ) ∈ K for 1 ≤ i ≤ r − 1. We call ∆(φ) the discriminant of φ.

For any monic a ∈ Fq[T ], we have

(1) φa = i(a) +
M−1∑
i=1

ai(φ, a)τ i + ∆(φ)(qM−1)/(qr−1)τM ,

for some ai(φ, a) ∈ K, where M = r degK a.

For any a ∈ A, a 6= 0, we define the A-module of a-torsion points as

φ[a] = {λ ∈ K | φa(λ) = 0}.
If I is a non-zero ideal of A, we similarly define the A-module of I-torsion points

φ[I] = {λ ∈ K | φa(λ) = 0 for every a ∈ I}.
We have that φ[a] ' (A/aA)r if φ is of rank r [13, Prop. 12.4]. Let Kφ,a := K(φ[a])
be the field obtained by adjoining a-torsion points of φ to K and let Kφ,I := K(φ[I]).

In the following, we briefly explain the definition of good reduction of a Drinfeld
module. For more details, refer to [9, 21]. Let φ be a rank r Drinfeld A-module over
K and let ℘ be a prime of K. Let O℘ be the valuation ring of ℘ with the maximal
ideal ℘ and residue field F℘ := O℘/℘. We say that φ has integral coefficients at ℘ if φa
has coefficients in O℘ for all a ∈ A and the reduction modulo ℘ of these coefficients
defines a Drinfeld module over ℘. The reduced Drinfeld module is denoted by φ℘.

We say that φ has good reduction at ℘ if there exists a Drinfeld module ψ over K
which is isomorphic to φ over K and ψ has integral coefficients at ℘, and ψ℘ is a
Drinfeld module of rank r.

By [20] (cf. [9, Theorem 4.10.5], cf. also [10, Theorem 3.2.3] for one direction), we have
that φ has good reduction at ℘ if and only if the GK-module φ[L∞] := ∪m≥1φ[Lm] is
unramified at ℘, where GK is the absolute Galois group of K and L is a prime ideal
of A different from ℘. This is the analog for Drinfeld modules of the classical result
of Ogg-Néron-Shafarevich in the theory of abelian varieties.

If φ is a Drinfeld A-module defined over K, and all its defining coefficients ai(φ) lie
in O, then we say that φ integral over O. If φ is integral over O, then it has good
reduction outside any set of primes S of K which includes the primes lying over ∞
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and the primes dividing the discriminant ∆(φ) of φ. In particular, the GK-modules
φ[L∞] and φ[L] are unramified outside S ∪ {primes of K lying over L}.

Let ℘ be a finite prime of K. The ℘-torsion points of φ in K give rise to a represen-
tation

ρφ,℘ : GK → AutA/℘(φ[℘]) ∼= GLr(A/℘A)

where GK is the absolute Galois group of K. Let Frob℘ ∈ Gal(K/K) denote a
Frobenius conjugacy class at an unramified prime ℘ of K. If φ has good reduction
at ℘, then the L-adic Tate module TL(φ) of φ is unramified at ℘ if ℘ 6= L. Let
a℘(φ) denote the trace of Frob℘ on the TL(φ), and more generally, let P℘(φ)(X) be
the characteristic polynomial of Frob℘ on the T`(φ). It is known that a℘(φ) and
P℘(φ)(X) are independent of L [9, Theorem 4.12.12].

The following is the Tate conjecture for rank r Drinfeld A-modules over K which is
proven in [18].

Theorem 1.1. Let φ, φ′ be rank r Drinfeld A-modules over K and AL be the L-adic
completion of A. Then the natural homomorphism

HomK(φ, φ′)⊗A AL → HomAL[GK ](TL(φ), TL(φ′))

is an isomorphism, where TL(∗) is the L-adic Tate module of ∗.

A consequence of the Tate conjecture is the isogeny theorem which states that two
Drinfeld A-modules φ, φ′ over K are K-isogenous if and only if P℘(φ)(X) = P℘(φ′)(X)
for all but finitely many primes ℘ [17, Proposition 3.1].

We prove the following partially explicit and effective version of the isogeny theorem
for rank r Drinfeld A-modules over K. For a Drinfeld A-module φ and a place ℘ of
K, define

τK,℘(φ) = inf

{
v℘(ai(φ))

qi − 1
: i = 1, . . . , r

}
.

For any extension L/F , let γL = [FL : Fq]. It is known that the constant field of
Kφ,tor := K(φ[a] : a ∈ A non-zero) is finite over Fq (cf. [4, Lemma 3.2]) so we may
define γφ = γKφ,tor

. More precisely, let gφ,∞̄ = [K∞̄(Λφ,∞̄) : K∞̄], where Λφ,∞̄ is the
lattice associated to the uniformization of φ over C∞̄. Then we have that

γφ ≤ gφ = min {gφ,∞̄ : ∞̄ | ∞} .

One can bound gφ,∞̄ using knowledge of the successive minima of the lattices Λφ,∞̄
associated to φ [6, Proposition 4(i)]. Unfortunately, an explicit bound for these
successive minima is not currently known except in the case of rank ≤ 2 [2], so this
term is currently inexplicit in general.
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Throughout, lnx denotes the natural logarithm of x, logq x the logarithm of x to base
q, and log∗q x = logq max {x, 1}.

Theorem 1.2. Let φ1, φ2 be rank r Drinfeld A-modules which are integral over O
and not K-isogenous. Let S be the set consisting of the primes of K lying over the
prime ∞ and the primes dividing ∆(φ1)∆(φ2). Suppose ℘ 6∈ S is a prime of K of
least degree such that P℘(φ1) 6= P℘(φ2). Then

(2) degK ℘ ≤ max

{
4

m0

(
Cq,r +W + crsq,r logqW

)
, smax

{
1 + 2 logq s, 7

}}
,

where

s = the geometric extension degree of K/F

m0 = γK

cr = 2r2 + r + 1

dr = cr + logq 86rs2(g + 1)

sq,r =
ln(qdr)

ln(qdr)− 1

Cq,r = logq 86rs2(g + 1) + cr

(
1 + sq,r logq

4

m0

+ logq dr

)
+ crsq,r logq logq dr

ar(φi) = ∆(φi), i = 1, 2

W = log∗q (ΛK(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) + gφ1gφ2m0

ΛK(φ1, φ2) = −
∑
v

τK,v(φ1) degK v −
∑
v

τK,v(φ2) degK v

degK radK x =
∑
v(x) 6=0

degK v

(the sums are over every place v of K).

Note that any Drinfeld A-module defined over K is isomorphic over K to a Drinfeld
A-module which is integral over O. In order to reduce the bounds given by the above
theorem, in particular the quantity degK radK ∆(φ1)∆(φ2), one should use minimal
models of φ1 and φ2 (cf. [19, Section 2]).

The proof follows the strategy in [16] as adapted to the Drinfeld module situation
with the notable difference that the effective Chebotarev Density Theorem we use
[12] is stronger and unconditional because GRH holds for function fields. Also, unlike
the number field case, it is necessary to deal with wild ramification when bounding
the different divisor. The bound we obtain on the different divisor is completely
explicit in terms of the defining coefficients of the Drinfeld modules involved, unlike
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the results in [6], which are effective but not explicit. In addition, the bounds are
sensitive to primes of potentially good reduction, unlike the bounds in [17].

We discuss some of the differences between our method and [6] in more detail later
in Section 7. In the rank 2 case, it is possible to make explicit the quantities involved
in Gardeyn’s bounds for the different divisor of torsion fields, by determining the
Newton polygons of exponential functions attached to Drinfeld modules [2]. However,
the computation of Newton polygons grows in complexity for higher rank, so new
techniques using weaker information will likely be required to obtain explicit bounds
for successive minima so we can apply the bounds of [6] for the different divisor and
gφ. Further remarks about this will be made in the concluding section 7.

2. Preliminaries

Let L be a finite extension of K, and OL be the maximal order of L, i.e. the integral
closure of O in L. The constant field FL of L is the algebraic closure of Fq in L. The
geometric extension degree of L/K is the degree of L/K ′, where K ′ is the maximal
constant field extension of K in L (i.e. [L : K]/[FL : FK ]). We say L/K is a geometric
extension if K = K ′.

For a prime ideal B of OL, we let degLB be the FL-dimension of the residue class
field FL,B := OL/B of B, extending this to a general ideal I of OL by additivity on
products. For a in OL, we define the degree of a by degL a := degL(a), where (a) is
the principal ideal of OL generated by a.

More generally, let B be a prime of L, OL,B the valuation ring of B, and FL,B :=
OL,B/B the residue class field of B. Then the degree of B is defined to be degLB :=
[FL,B : FL], the FL-dimension of FL,B. We extend the definition by linearity to a
divisor D =

∑
B nBB of L by degLD =

∑
B nB degLB. The finite part D0 of a

divisor D =
∑

B nBB is the divisor
∑

B-∞ nBB.

Let iL/K : Div(K) → Div(L) be the conorm map from divisors on K to divisors on
L, defined by

iL/K(℘) =
∑
B|℘

e(B/℘)B

for every prime ℘ of K, and then extended by linearity, where e(B/℘) denotes the
ramification index of B over B.

For B a prime of L lying over the prime ℘ of K, denote by f(B/℘) the inertia degree
of B over ℘.
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Lemma 2.1. Let L/K be a finite extension, D a divisor of K, and B is a prime of
L lying over the prime ℘ of K. Then

degL iL/KD = n′ degK D,

degLB =
f(B/℘)

[FL : FK ]
degK ℘

where n′ is the geometric extension degree of L/K.

Proof. cf. [13, Proposition 7.7] �

Let L/K be a finite extension. Writing divisors in terms of places instead of primes,
the different divisor D(L/K) of L/K is defined as

D(L/K) =
∑
w

w(D(Lw/Kv))w,

and its degree is given by

degLD(L/K) =
∑
w

w(D(Lw/Kv)) degLw,

where w ranges through all normalized places of L, and D(Lw/Kv) is the different
ideal of Lw/Kv.

For convenience, we also define the degree with respect to K of D(L/K) as

degK D(L/K) =
∑
v

max {v(D(Lw/Kv)) : w|v} degK v,

where v ranges through all normalized places of K. Similarly, we define the degree
with respect to K of D0(L/K) as

degK D0(L/K) =
∑
v-∞

max {v(D(Lw/Kv)) : w|v} degK v.

Lemma 2.2. Let L/K be a finite extension. Then

degLD(L/K) ≤ n′ degK D(L/K),

where n′ is the geometric extension degree of L/K.
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Proof. By the definition, we have

degLD(L/K) =
∑
w

w(D(Lw/Kv)) degLw

=
∑
v

∑
w|v

w(D(Lw/Kv)) degLw

=
∑
v

∑
w|v

v(D(Lw/Kv))e(w/v)f(w/v)
1

[FL : FK ]
degK v

≤ 1

[FL : FK ]

∑
v

max {v(D(Lw/Kv)) : w|v}
∑
w|v

e(w/v)f(w/v) degK v

= n′
∑
v

max {v(D(Lw/Kv)) : w|v} degK v = n′ degK D(L/K),

where FL and FK are the constant fields of L and K respectively, f(w/v) denotes the
relative degree of w over v, and we use the identity

[L : K] =
∑
w|v

e(w/v)f(w/v),

which is valid as our constant fields are finite and hence perfect [13, Proposition
7.4]. �

Lemma 2.3. Let M/L/K be a tower of finite separable extensions. Then the different
divisor satisfies the following transitivity relation,

D(M/K) = D(M/L) + iM/LD(L/K).

Proof. Refer to [15, Proposition 8, Chapter III.4]. �

Lemma 2.4. Let K be a local field with ring of integers O and L/K be a finite
extension of K with ring of integers OL. Let α ∈ OL be such that L = K(α) and
suppose f(X) ∈ O[X] is the minimal polynomial of α over K. Then the different ideal
D(OL/O) divides the ideal (f ′(α)), with equality holding if and only if OL = O[α].
Furthermore, we may replace f(X) by any monic polynomial g(X) in O[X] which α
satisfies.

Proof. cf. [15, Corollary 2, III.6]. For the final remark, we note that g(X) = f(X)h(X)
for some g(X) ∈ O[X] so that (g′(α)) = (f ′(α)h(α)) ⊆ (f ′(α)). �

Lemma 2.5. Let E/K and L/K be finite extensions of local fields, with O the ring
of integers of K, OE the ring of integers of E, OEL the ring of integers of EL, OL
the ring of integers of L.

Then the different ideals satisfy D(EL/L) | OEL ·D(E/K).
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Proof. Suppose that OE = OK [x] for some x ∈ B so that E = K(x) (cf. [15,
Proposition 12, III.6]). Let f ∈ OK [X] be the minimal polynomial of x over K.

Now EL = K(x)L = K(x) and x ∈ OEL.

As f ∈ O[X] is monic and x ∈ OEL is a root of f , we may apply Lemma 2.4 to get
that D(EL/L) | OEL · f ′(x). But as OE = O[x], we have that D(E/K) = OE · f ′(x).
Hence, OEL · f ′(x) = OEL · OE · f ′(x) = OEL ·D(E/K). The result thus follows. �

Lemma 2.6. Let E/K and L/K be finite extensions of global fields. Then

D(EL/K) ≤ iEL/ED(E/K) + iEL/LD(L/K).

Proof. This follows by localization and applying Lemma 2.3 and Lemma 2.5. �

3. Effective Chebotarev Density Theorem

Lemma 3.1. Let K be a finite extension of F = Fq(T ) with constant field Fq, where
Fq is a finite field of order q, and let g be the genus of K. Let S(N) be the number
of primes ℘ of K with degK ℘ = N . Then

| S(N)− qN

N
| ≤

(
2g + 1 +

(
2g +

3

2

)
4

q

)
q
N
2

N
.

Proof. From the Prime Number Theorem for L [13, Theorem 5.12], we have that

S(N) =
qN

N
+O

(
q
N
2

N

)
.

We recall the proof in loc. cit. to make the constant explicit.

Let ZK(u) be the zeta function of K. Using the Euler product decomposition of
ZK(u) and [13, Theorem 5.9], we obtain

ZK(u) =

∏2g
i=1(1− πiu)

(1− u)(1− qu)
=
∞∏
d=1

(1− ud)−S(d).

Taking the logarithmic derivative of both sides, multiplying by u, and equating coef-
ficients of uN yields the relation:

qN + 1−
2g∑
i=1

πNi =
∑
d|N

dS(d).
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Using the Möbius inversion formula yields

NS(N) =
∑
d|N

µ(d)q
N
d + 0−

∑
d|N

µ(d)

(
2g∑
i=1

π
N
d
i

)
.

Following the argument in [13, Theorem 2.2], we obtain∣∣∣∣∣∣
∑
d|N

µ(d)q
N
d − qN

∣∣∣∣∣∣ ≤ q
N
2 +Nq

N
3 .

Similarly, using the Riemann Hypothesis [13, Theorem 5.10], we obtain∣∣∣∣∣∣
∑
d|N

µ(d)

(
2g∑
i=1

π
N
d
i

)∣∣∣∣∣∣ ≤ 2gq
N
2 + 2gNq

N
4 .

It follows that ∣∣NS(N)− qN
∣∣ ≤ (2g + 1)q

N
2 +Nq

N
3 + 2gNq

N
4

so

(3)

∣∣∣∣S(N)− qN

N

∣∣∣∣ ≤ 2g + 1

N
q
N
2 + q

N
3 + 2gq

N
4 ≤ q

N
2

N

(
2g + 1 +

N

q
N
6

+ 2g
N

q
N
4

)
.

Since x
qx
≤ 1

q
for x ≥ 1, (3) is less than or equal to

q
N
2

N

(
2g + 1 +

(
2g +

3

2

)
4

q

)
.

�

The next theorem follows from the effective Chebotarev Density Theorem in [12,
Theorem 1].

Theorem 3.2. Let K be a finite extension of F = Fq0(T ) with constant field Fq and
the genus g, where q = qm0

0 . Let E be a finite Galois extension of K with Galois group
G, Fqm the algebraic closure of Fq in E, and K ′ = FqmK be the maximal constant
field extension of K in E.

Let C ⊆ G = Gal(E/K) be a non-empty conjugacy class in G whose restriction
to Fqm/Fq ∼= K ′/K is τ k, where τ is the Frobenius map τ(x) = xq, and D be the
different divisor of E/K ′. Let Σ be the divisor of K which is the sum of the primes
of K which are ramified in E, and suppose Σ′ is a divisor of K such that Σ′ ≥ Σ.
Let B = max {degK Σ′, degE D, 2|Gal(E/K ′)| − 2, 1}.
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If N ≥ 2
m0

logq0
4
3

(
B2 +B

(
2g + g

m
+ 3
)

+ 2(5g + g
m

+ 3)
)

and N ≡ k (mod m), there

is a prime ℘ /∈ Σ′ of K such that degK ℘ = N and Frob℘ = C.

Proof. The situation at the outset is that we start with F = Fq0(T ) and K a finite
extension of F with possibly larger constant field Fq, where q = qn0 . Next, we replace
F = Fq0(T ) by F = Fq(T ) so that K is a geometric extension of F = Fq(T ). This
allows us to use Lemma 3.1 without modification, but now q0 is replaced by q.

Another remark is that if there exists a prime ℘ /∈ Σ′ of K such that degK ℘ = N and
Frob℘ = C, then it follows that C restricted to K ′/K ∼= Fqm/Fq is τN by [12, Lemma
1]. Since Gal(Fqm/Fq) cyclic of order m, we have that τN = τ k in Gal(Fqm/Fq) if and
only if N ≡ k (mod m).

Let Fqm be the algebraic closure of Fq in E so K ′ := FqmK and E/K ′ is a geometric
extension. Let D := degE D and δ′ = degK Σ′. Let π(N,Σ′) be the number of
primes ℘ /∈ Supp Σ′ of K with degK ℘ = N and πC(N,Σ

′) be the number of primes
℘ /∈ Supp Σ′ of K such that degK ℘ = N and Frob℘ = C.

It suffices to find a lower bound N0 for N such that for N ≥ N0, πC(N,Σ
′) is positive.

In fact, the genus g of K over Fq is the same as that of K ′ over Fqm (refer to [13,
Prop. 8.9]). We know that the genus of K ′ over Fqm and the genus of E over Fqm
are related by the Riemann-Hurwitz Theorem [13, Theorem 7.16]. Thus, letting gE
be the genus of E, we have

(4) gE = 1 + |Gal(E/K ′)|(g − 1) +
1

2
D.

The effective Chebotarev Density Theorem in [12, Theorem 1] gives

m|C|
|G|

π(N,Σ′)− α ≤ πC(N,Σ
′) ≤ m|C|

|G|
π(N,Σ′) + α,

where

(5) α =
|C|
N
qN/2

(
2gE

1

|G|
+ 2(2g + 1) +

1 + N
|C|

qN/2
δ′

)
.

The condition N ≡ r (mod m) ensures C restricted to Fqm/Fq is τN .

Remark 3.3. When Σ′ = Σ, this is what is proved in [12, Theorem 1]. However,
the proof carries over with Σ replaced by Σ′. In particular, the key identity (2.1) still
holds with y ∈ Yr unramified replaced by y ∈ Yr not in the support of Σ′ ≥ Σ.

We have that

π(N,Σ′) ≥ S(N)− degK Σ′

N
.
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Thus,

m|C|
|G|

(
S(N)− degK Σ′

N

)
− α ≤ πC(N,Σ

′)

It is therefore enough to find a lower bound for N such that

(6)
m|C|
|G|

(
S(N)− degK Σ′

N

)
− α > 0.

From Lemma 3.1 we have
(7)
qN

N
−
(

2g + 1 +

(
2g +

3

2

)
4

q

)
qN/2

N
≤ S(N) ≤ qN

N
+

(
2g + 1 +

(
2g +

3

2

)
4

q

)
qN/2

N
.

Since |G|
m

= |Gal(E/L′)| and 1+N/|C|
qN/2

≤ 2, from (5) we have

(8) α ≤ 2m|C|
N |G|

qN/2(|Gal(E/K ′)|(2g + 1 + δ′) +
gE
m

).

Therefore, combining (6) through (8), we obtain
(9)
m|C|
|G|

(
S(N)− degK Σ′

N

)
−α ≥ m|C|

N |G| q
N/2

(
qN/2 −

(
c0 +

degK Σ′

qN/2
+ 2|Gal(E/K′)|(2g + 1 + δ′) + 2

gE
m

))
,

where c0 = 2g + 1 +
(
2g + 3

2

)
4
q
.

We thus need to find a lower bound of N such that the right hand side of the inequality
of (9) is positive, or equivalently

qN/2 > c0 +
degK Σ′

qN/2
+ 2|Gal(E/K ′)|(2g + 1 + δ′) + 2

gE
m

(10)

= c0 +
degK Σ′

qN/2
+ 2|Gal(E/K ′)|(2g + 1 + δ′) +

2

m

(
1 + |Gal(E/K ′)|(g − 1) +

1

2
D
)(11)

= c0 +
degK Σ′

qN/2
+ 2|Gal(E/K ′)|

(
2g + 1 + δ′ +

g − 1

m

)
+

2

m

(
1 +

1

2
D
)(12)

using (4).

Let 1 ≤ B, δ′ ≤ B, D ≤ B, and |Gal(E/K ′)| ≤ 1
2
B + 1. Note if g = 0, it suffices to

take δ′ ≤ B and D ≤ B only, as it is then automatic that |Gal(E/K ′)| ≤ 1
2
D + 1 ≤
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1
2
B + 1. Therefore, we have that

c0 +
degK Σ′

qN/2
+ 2|Gal(E/K ′)|

(
2g + 1 + δ′ +

g − 1

m

)
+

2

m

(
1 +

1

2
D
)

≤ c0 +
B

qN/2
+ (B + 2)

(
2g + 1 +B +

g − 1

m

)
+

2

m

(
1 +

1

2
B

)
≤ 2g + 1 +

(
2g +

3

2

)
4

q
+

B

qN/2
+ (B + 2)

(
2g + 1 +B +

g − 1

m

)
+

2

m

(
1 +

1

2
B

)
≤ B2 +B

(
2g + 3 +

g

m

)
+ 6g + 3 +

2g

m
+

(
2g +

3

2

)
4

q
+

B

qN/2

≤ B2 +B
(

2g + 3 +
g

m

)
+ 10g + 6 +

2g

m
+

B

qN/2
,

where the last inequality uses 4
q
≤ 2. Therefore, it suffices to have

qN/2 >

(
B2 +B

(
2g + 3 +

g

m

)
+ 10g + 6 +

2g

m

)
+

B

qN/2
.

This can be satisfied if the following two inequalities hold,

αqN/2 ≥ B2 +B
(

2g + 3 +
g

m

)
+ 10g + 6 +

2g

m
and

(1− α)qN/2 >
B

qN/2
,

where 0 < α < 1, or equivalently,

N ≥ 2 logq
1

α

(
B2 +B

(
2g + 3 +

g

m

)
+ 10g + 6 +

2g

m

)
and

N > logq
1

1− α
B.

Taking α = 3
4
, the required inequalities become

N ≥ 2 logq
4

3

(
B2 +B

(
2g + 3 +

g

m

)
+ 10g + 6 +

2g

m

)
and

N > logq 4B.

So if N ≥ 2
m0

logq0
4
3

(
B2 +B

(
2g + 3 + g

m

)
+ 2

(
5g + 3 + g

m

))
and N ≡ k (mod m),

then there is a prime ℘ /∈ Σ′ of K such that degK ℘ = N and Frob℘ = C. �

Corollary 3.4. Let the notation and hypotheses be as in Theorem 3.2. Then there
exists a prime ℘ /∈ Σ′ of K such that Frob℘ = C and

degK ℘ ≤
4

m0

logq0
4

3
(B + 3g + 3) +m.

12



Proof. Let M be the integer such that

M =
2

m0

logq0
4

3

(
B2 +B

(
2g +

g

m
+ 3
)

+ 2(5g +
g

m
+ 3)

)
+ δ,

where 0 ≤ δ < 1. Let N = M + k′, where 0 ≤ k′ ≤ m − 1 is chosen so that N ≡ k
(mod m). Then N ≥ 2

m0
logq0

4
3

(
B2 +B

(
2g + g

m
+ 3
)

+ 2(5g + g
m

+ 3)
)

and N ≡ k

(mod m). By Theorem 3.2, there exists a prime ℘ /∈ Σ′ of K such that degK ℘ = N
and Frob℘ = C. Now,

degK ℘ = N = M + k′

≤ 2

m0

logq0
4

3

(
B2 +B

(
2g + 3 +

g

m

)
+ 10g + 6 +

2g

m

)
+m

≤ 2

m0

logq0
4

3

(
B + 2g + 3 +

g

m

)2

+m

≤ 4

m0

logq0
4

3
(B + 3g + 3) +m.

�

4. Bounds for the different divisor

Proposition 4.1. Let φ be a rank r Drinfeld A-module which is integral over K and
let L = (a) be a finite prime of A with a monic. Let D0(Kφ,L/K) be the finite part of
the different divisor D(Kφ,L/K). Then we have

degK D0(Kφ,L/K) ≤ r

(
degK a+

(`r − 2)(`r − 1)

qr − 1
degK ∆(φ)

)
,

where ` = qdegF L. In addition, if v(a∆(φ)) = 0 for a finite place v of K, then

v(D(Kφ,L,w/Kv)) = 0,

where D(Kφ,L,w/Kv) is the different ideal of Kφ,L,w/Kv, and w | v is a place of Kφ,L,w.

Proof. This is a slightly modified version of [4, Lemma 4.2] which is derived from [17].

Let α ∈ K be a root of a separable polynomial f(X) = b0X + b1X
q + . . . + bmX

qm

with bi ∈ O and b0bm 6= 0. Then h(X) = bq
m−1
m f(X/bm) = b0b

qm−2
m X + b1b

qm−1−q
m Xq +

. . . + bm−1b
qm−1−qm−1

m Xqm−1
+ Xqm ∈ O[X] is monic. Since h(bmα) = 0 and K(α) =

K(bmα), we may apply Lemma 2.4 to bmα and h(X) to show the different ideal
D(K(α)/K) divides the principal ideal (b0b

qm−2
m ).

Let L = (a) and f(X) = φa(X). Then f(X) = aX + . . . + ∆(φ)(qm−1)/(qr−1)Xqm

where m = r degF a (cf. [13, Proposition 13.8]). There are r roots β1, . . . , βr of φa(X)
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which generate Kφ,L over K. Using the transitivity of the different (cf. Lemma 2.3),
it follows that

(13) D(Kφ,L/K) |
(
b0b

qm−2
m

)r
=
(
a (∆(φ))(qm−2)(qm−1)/(qr−1)

)r
.

This shows that if v(a∆(φ)) = 0 for a finite place v, then v(D(Kφ,L,w/Kv)) = 0.
Furthermore, taking the degree with respect to K of (13), we obtain

degK D0(Kφ,L/K) ≤ r(degK a+
(`r − 2)(`r − 1)

qr − 1
degK ∆(φ)).

�

Although it is possible to obtain a bound on degK D(Kφ,L/K) based on Proposi-
tion 4.1 and Lemma 4.2, we shall give a slightly more refined bound in Proposition 4.3,
using additional techniques.

Lemma 4.2. Let ∞̄ be an infinite prime of K, K∞̄ be the completion of K at ∞̄, O∞̄
the valuation ring of ∞̄, v∞̄ the valuation associated to ∞̄, and e be the ramification
index of ∞̄ over ∞.

Let φT (X) = TX + a1X
q + · · ·+ aiX

qi + · · ·+ arX
qr be a rank r Drinfeld A-module

defined over K, and write φTn(X) = T nX + b1X
q + . . .+ biX

qi + . . .+ brnX
qrn where

n ≥ 1.

Let ω1 = max
{
e,−v∞̄(ai)

qi
, i = 1, . . . , r

}
and ωn = nω1. Then

ωn ≥ max

{
ne,−v∞̄(bi)

qi
: i = 1, . . . , rn

}
.

Proof. We use induction on n. First note that

φTn(λnX) = T nλnX + b1λ
q
nX

q + . . .+ biλ
qi

nX
qi + . . .+ brnλ

qrn

n Xqrn ,

so taking λn ∈ K with v∞̄(λn) = ωn ≥ max
{
ne,−v∞̄(bi)

qi
: i = 1, . . . , rn

}
implies that

φTn(λnX) ∈ O∞̄[X].

The result is true for n = 1 as ω1 = max
{
e,−v∞̄(ai)

qi
, i = 1, . . . , r

}
.

Assume ωn = nω1 ≥ max
{
ne,−v∞̄(bi)

qi
: i = 1, . . . , rn

}
. Now, consider the terms in

the product

φTn+1 = φTn ◦ φT = (T n + b1τ + . . .+ brnτ
rn) ◦ (T + a1τ + · · ·+ arτ

r),

14



where there are 2(r + 1) types of terms to consider:

biτ
iT =biT

qiτ i, 1 ≤ i ≤ rn,

biτ
ia1τ =bia

qi

1 τ
i+1, 1 ≤ i ≤ rn,

...

biτ
iarτ

r =bia
qi

r τ
i+r, 1 ≤ i ≤ rn,

T n+1, T na1τ, T
na2τ

2, · · · , T narτ r

We need to show ωn+1 ≥ the valuations of the coefficients of each type of term,
namely, that for each i with 1 ≤ i ≤ rn,

ωn+1 ≥ −
v∞̄(bi)

qi
+ e(14)

ωn+1 ≥ −
v∞̄(bi)

qi+j
− v∞̄(aj)

qj
, 1 ≤ j ≤ r,(15)

ωn+1 ≥ ne+ 1(16)

ωn+1 ≥ ne− v∞̄(aj)

qj
, 1 ≤ j ≤ r.(17)

As ωn ≥ −v∞̄(bi)
qi

for 1 ≤ i ≤ 2n, we have that ωn+1 = ωn + ω1 ≥ ωn
qj

+ ω1 ≥
−v∞̄(bi)

qi+j
+ ω1 for j = 0, 1, · · · , r and i = 1, 2, . . . , rn, so (14) and (15) are satisfied.

Since ω1 = max
{
e,−v∞̄(aj)

qj
, j = 1, . . . , r

}
,

ωn+1 = (n+1)ω1 = nω1+ ω1 ≥ ne+ω1 ≥ max

{
(n+ 1)e, ne− v∞̄(aj)

qj
, j = 1, . . . , r

}
,

so the last inequalities in (16) and (17) are satisfied. �

In the following proposition, we obtain an upper bound on the degree of the different
divisor of Kφ,L/K, which uses mild information from the Newton polygons of φa(X),
and takes into account primes of potentially good reduction.

Proposition 4.3. Let φ be a rank r Drinfeld A-module which is integral over K and
let L = (a) be a finite prime of A with a monic. Let D(Kφ,L/K) be the different
divisor of Kφ,L/K. Then we have

degK D(Kφ,L/K) ≤ r

(
`r − 1

q − 1
(s degK a+ Λ(φ)) + 2 degK a radK ∆(φ)

)
,

15



where s denotes the geometric extension degree of K/F , ` = qdegF L, Λ(φ) = −
∑

v τv(φ) degK v,
and for x ∈ K, we let degK radK x :=

∑
v(x) 6=0 degK v (the sums are over every place

v of K).

Proof. Let φT (X) = TX + a1X
q + . . .+ arX

qr where ai ∈ O. Let

f(X) = φa(X) = b0X + b1X
q + . . .+ brnX

qrn

= brn

qrn∏
i=1

(X − αi),

where b0 = a, brn = a
qrn−1
qr−1
r , and n = degK a = degK L. Let α be any one of the αi.

Let ℘ be a finite place of K with corresponding discrete valuation v℘, and let τ℘ =

inf
{
v℘(ai)

qi−1
: i = 1, . . . , r

}
. Note τ℘ ≥ 0. Let K℘ be the completion of K at ℘, and

K℘
′/K℘ be a totally tamely ramified extension with ramification index 1

qrn−1
, and

ring of integers O′℘.

Over K℘
′, φT is isomorphic to a Drinfeld A-module φ′T (X) = TX+a′1X

q+. . .+a′rX
qr ,

where a′i = ai/λ
qi−1, v℘(a′i) ≥ 0, for 1 ≤ i ≤ r, v℘(λ) = τ℘, and λ ∈ K℘

′.

Let φ′a(X) = b′0X + b′1X
q + . . .+ b′rnX

qrn . As b′i = bi/λ
qi−1, we have that

v℘(bi) ≥ (qi − 1)v℘(λ)

= (qi − 1)τ℘.

From the Newton polygon of f(X), we have that

v℘(α) ≥ −
v℘(ar)

qrn−1
qr−1

− (qrn−1 − 1)τ℘

qrn − qrn−1
:= −δ.

Pick a µ ∈ K℘
′ such that v℘(µ) = δ + ε where 0 ≤ ε < 1

qrn−1
. Now,

f(X/µ) = brn/µ
qrn

qrn∏
i=1

(X − µαi),

16



and we know that g(X) =
∏

i(X − µαi) is monic and lies in O′℘[X], where O′℘ is the

ring of integers of K℘
′. Thus, g′(X) = µq

rn−1a/brn. Hence,

v℘(g′(µα)) = v℘(µ)(qrn − 1) + v℘(a)− v℘(brn)

≤ δ(qrn − 1) + 1 + v℘(a)− v℘(ar)
qrn − 1

qr − 1

≤ v℘(ar)
qrn − 1

qr − 1

(
qrn − 1

qrn − qrn−1
− 1

)
− (qrn−1 − 1)(qrn − 1)

qrn − qrn−1
τ℘ + 1 + v℘(a)

≤ v℘(ar)
qrn − 1

qr − 1
· 1− q1−rn

q − 1
− q2rn−1 − qrn − qrn−1 + 1

qrn − qrn−1
τ℘ + 1 + v℘(a)

= v℘(ar)
qrn − 1

(qr − 1)(q − 1)
− qrn − q − 1 + q1−rn

q − 1
τ℘ + 1 + v℘(a).

It follows that

v℘(D(K℘
′(µα)/K℘

′)) ≤ v℘(ar)
qrn − 1

(qr − 1)(q − 1)
− qrn − q − 1 + q1−rn

q − 1
τ℘ + 1 + v℘(a)

and

v℘(D(K℘(α)/K℘)) ≤ v℘(D(K℘
′(µα)/K℘

′)) + v℘(D(K℘
′/K℘))

≤ v℘(ar)
qrn − 1

(qr − 1)(q − 1)
− qrn − q − 1 + q1−rn

q − 1
τ℘ + 2 + v℘(a).

Since τ℘ ≤ v℘(ar)

qr−1
, we have that

v℘(ar)
qrn − 1

(qr − 1)(q − 1)
− qrn − q − 1 + q1−rn

q − 1
τ℘ + 2 + v℘(a)

≥ v℘(ar)
qrn − 1

(qr − 1)(q − 1)
− qrn − q − 1 + q1−rn

q − 1

v℘(ar)

qr − 1
+ 2 + v℘(a)

= v℘(ar)
q − q1−rn

(qr − 1)(q − 1)
+ 2 + v℘(a)

≥ 2.

From Proposition 4.1, we know for a finite place v℘ of K, v℘(D(K(α)/K)) = 0 if
v℘(aar) = 0. It follows that we in fact have that

(18) v℘(D(K℘(α)/K℘)) ≤ v℘(ar)
qrn − 1

(qr − 1)(q − 1)
− q

rn − q − 1 + q1−rn

q − 1
τ℘+2ν+v℘(a)

where ν = 1 if v℘(aar) > 0 and ν = 0 if v℘(aar) = 0.
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Let ∞̄ ∈ SK∞ be an infinite prime of K with corresponding valuation v∞̄, and let
K ′∞̄/K∞̄ be a totally tamely ramified extension with ramification index 1

qrn−1
, and

ring of integers O′∞̄.

Let τ∞̄(φ) = inf
{
v∞̄(ai)
qi−1

: i = 1, . . . , r
}

. Note τ∞̄ ≤ 0.

Over K ′∞̄, φT is isomorphic to a Drinfeld A-module φ′T (X) = TX+a′1X
q+. . .+a′rX

qr ,

where a′i = ai/λ
qi−1, v∞̄(a′i) ≥ 0, for 1 ≤ i ≤ r, v∞̄(λ) = τ∞̄, and λ ∈ K ′∞̄.

Let φ′a(X) = b′0X+b′1X
q+. . .+b′rnX

qrn . Set ω1 = max
{
e,−v∞̄(a′i)

qi
: i = 1, . . . , r

}
= 1.

From Lemma 4.2, we know that ωn = nω1 ≥ max
{
ne,−v∞̄(b′i)

qi
: i = 1, . . . , rn

}
. Thus,

v∞̄(b′i) ≥ −qine for i = 1, . . . , rn. As b′i = bi/λ
qi−1, we have that

v∞̄(bi) ≥ −qine+ (qi − 1)v∞̄(λ)

= −qine+ (qi − 1)τ∞̄.

From the Newton polygon of f(X), it follows that

v∞̄(α) ≥ −
v∞̄(ar)

qrn−1
qr−1

+ neqrn−1 − (qrn−1 − 1)τ∞̄

qrn − qrn−1
:= −δ∞̄.

Let µ∞̄ be such that v∞̄(µ∞̄) = δ∞̄ + ε∞, where 0 ≤ ε∞ < 1
qrn−1

. Now,

f(X/µ∞̄) = brn/µ
qrn

∞̄

qrn∏
i=1

(X − µ∞̄αi),

and we know that g(X) =
∏qrn

i=1(X − µ∞̄αi) is monic and lies in O′∞̄[X], where O′∞̄
is the ring of integers of K ′∞̄. Thus, g′(X) = µq

rn−1
∞̄ a/brn. Hence,

v∞̄(g′(µ∞̄α)) = v∞̄(µ∞̄)(qrn − 1) + v∞̄(a)− v∞̄(brn)

≤ δ∞̄(qrn − 1) + 1 + v∞̄(a)− v∞̄(ar)
qrn − 1

qr − 1

≤ v∞̄(ar)
qrn − 1

qr − 1

(
qrn − 1

qrn − qrn−1
− 1

)
+ ne

qrn − 1

q − 1
− (qrn−1 − 1)(qrn − 1)

qrn − qrn−1
τ∞̄ + 1 + v∞̄(a)

= v∞̄(ar)
qrn − 1

qr − 1
· 1− q1−rn

q − 1
+ ne

qrn − 1

q − 1
− q2rn−1 − qrn − qrn−1 + 1

qrn − qrn−1
τ∞̄ + 1 + v∞̄(a)

= v∞̄(ar)
qrn − 1

(qr − 1)(q − 1)
+ ne

qrn − 1

q − 1
− qrn − q − 1 + q1−rn

q − 1
τ∞̄ + 1 + v∞̄(a).
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It follows that
(19)

v∞̄(D(K∞̄(α)/K∞̄)) ≤ v∞̄(ar)
qrn − 1

(qr − 1)(q − 1)
+ne

qrn − 1

q − 1
−q

rn − q − 1 + q1−rn

q − 1
τ∞̄+2+v∞̄(a).

Let D(K(α)/K) be the different divisor of K(α) over K, and ΩP be the set of con-
jugates of α over KP . Using (18) and (19), we obtain

degK D(K(α)/K) =
∑
P

max {vP (D(KP (α)/KP )) : α ∈ ΩP} degK P

≤ n
qrn − 1

q − 1

∑
∞̄∈SK∞

e(∞̄/∞) degK ∞̄ −
qrn − q − 1 + q1−rn

q − 1

∑
v

τP degK P

+ 2 degK radK aar,

= n
qrn − 1

q − 1

∑
∞̄∈SK∞

e(∞̄/∞)
f(∞̄/∞)

[FK : FF ]
degF ∞

− qrn − q − 1 + q1−rn

q − 1

∑
v

τP degK P + 2 degK radK aar,

≤ n
qrn − 1

q − 1
s− qrn − q − 1 + q1−rn

q − 1

∑
v

τP degK P + 2 degK radK aar,

where the summation runs through all the primes P of K, s is the geometric extension
degree of K/F , and we use the fact that

∑
P vP (x) degK P = 0 for x ∈ K. Remark

that
∑

P τP degK P ≤ 0, so we finally get

degK D(K(α)/K) ≤ ns
qrn − 1

q − 1
+
qrn − q − 1 + q1−rn

q − 1

(
−
∑
v

τP degK P

)
+ 2 degK radK aar

≤ ns
qrn − 1

q − 1
+
qrn − 1

q − 1

(
−
∑
P

τP degK P

)
+ 2 degK radK aar

≤ qrn − 1

q − 1

(
ns−

∑
v

τP degK P

)
+ 2 degK radK aar

≤ `r − 1

q − 1
(ns+ Λ(φ)) + 2 degK radK aar

≤ `r − 1

q − 1
(s degK a+ Λ(φ)) + 2 degK radK a∆(φ)

Using transitivity of the different (cf. Lemma 2.3), and the fact that Kφ,L is generated
by r of the roots αi, the result follows. �
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Corollary 4.4. Assume the notation of Proposition 4.3. Let φ1 and φ2 be rank r
Drinfeld A-modules which are integral over O. Let D(K̃/K) be the different divisor
of K̃/K, where K̃ = Kφ1,LKφ2,L. Then we have

degK D(K̃/K) ≤ r

(
`r − 1

q − 1
(2s degK a+ Λ(φ1, φ2)) + 2 degK radK ∆(φ1)∆(φ2) + 4 degK a

)
,

where Λ(φ1, φ2) = Λ(φ1) + Λ(φ2).

Proof. The result follows from Lemma 2.6 and Proposition 4.3. �

5. Proof of Theorem 1.2

We first recall some intermediate results which are function field analogues of those
found in [16] (cf. [6]).

Lemma 5.1. We have that ∑
1≤degF L≤N

degF L ≥ qN

for all positive integers N , where the sum is over finite primes L of F .

Proof. The product of all finite primes L of F such that degL divides N is equal to
T q

N − T , so the inequality follows. �

Lemma 5.2. For any non-zero n ∈ A, there exists a finite prime L of F such that
n 6≡ 0 (mod L) with degF L ≤ 1 + logq degF n.

Proof. Suppose n ≡ 0 (mod L) for all the primes L such that 1 ≤ degF L ≤ 1 +
logq degF n.

Choose k := b1 + logq degF nc, so that k − 1 ≤ logq degF n < k, and hence qk−1 ≤
degF n < qk

Then
∏

1≤degF L≤k divides n, thus qk ≤ degF n by Lemma 5.1. But, degF n < qk,
which is a contradiction. �

For the proof of Theorem 1.2, we will require an estimate of the form

(20) γxt ≤ x

1 + logq x
,

for x ≥ C.
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Lemma 5.3. Let c∗ ≥ 1 be given and set t∗ = 1− 1
ln(qc∗)

. Then we have

(21) γxt
∗ ≤ x

1 + logq x
,

for x ≥ c∗, where γ = (c∗)1−t∗

1+logq c
∗ = (c∗)

1
ln(qc∗)

1+logq c
∗ .

Proof. The inequality

γxt ≤ x

1 + logq x

is equivalent to

f(x, t) =
x1−t

1 + logq x
≥ γ.

For a fixed t, taking the derivative of f with respect to x,

f ′(x, t) = x−t
(

(1− t)(1 + logq x)− 1

ln q

)
/∗2,

where ∗ = (1+logq x). Hence, f ′(x, t) ≥ 0 is equivalent to (1−t)(1+logq x)− 1
ln q
≥ 0,

equivalently,

(22) (1− t)(ln q + lnx) ≥ 1.

Assuming t < 1, (22) is equivalent to x ≥ e
1

1−t

q
:= β(t). Thus, for a fixed t < 1,

f(x, t) is increasing with respect to x, when x ≥ β(t); that is, f(x, t) ≥ f(β(t), t) if
x ≥ β(t). Now, β(t∗) = c∗ and t∗ < 1, so we obtain

xt
∗
f(c∗, t∗) ≤ x

1 + logq x
,

for x ≥ c∗. �

Lemma 5.4.

logq(x+ y) ≤ max{logq(2x), logq(2y)}(23)

logq(x+ y) ≤ logq x+ logq y if x, y ≥ 2.(24)

Proof. In order to have z ≥ logq(x+ y), it suffices to have

1

2
qz ≥ x and

1

2
qz ≥ y,

which is equivalent to

z ≥ logq(2x) and z ≥ logq(2y).

Thus, taking z = max{logq(2x), logq(2y)}, we have logq(x+y) ≤ max{logq(2x), logq(2y)}.
�
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Conclusion of the proof of Theorem 1.2

Let ℘ 6∈ S be a prime of K with least degree such that P℘(φ1) 6= P℘(φ2), where S
is the given finite set of primes of K outside of which both φ1 and φ2 have good
reduction. Let α0 be a non-zero coefficient of P℘(φ1)− P℘(φ2).

It is known that a root γ of P℘(φ1) or P℘(φ2) satisfies

v∞(γ) = −1

r
degK ℘,

(cf. [10, Theorem 3.2.3(c)(d)], [6, Proposition 9]). This implies that each coefficient
β of P℘(φ1) and P℘(φ2) satisfies degF β ≤ degK ℘ and hence each coefficient α of
P℘(φ1)− P℘(φ2) also satisfies degF α ≤ degK ℘, in particular degF α0 ≤ degK ℘.

We choose a finite prime L of F by Lemma 5.2 such that

(25) α0 6≡ 0 (mod L) and degF L ≤ 1 + logq degK ℘,

and write L = (a), where a is monic in A.

Suppose ℘ lies above the prime p of F . For x ≥ 7, we have that logq x <
1
2
(x−1) (since

if we let f(x) = 1
2
(x− 1)− logq x, then f ′(x) > 0 for x ≥ 7 and f(7) > 0). Hence, we

obtain that x < q
1
2

(x−1), so q
1
2 (x−1)

x
> 1; hence, qx−1

x
> q

1
2

(x−1) for x ≥ 7. Thus, noting

s ≥ f(℘/p)
[FK :FF ]

, if x ≥ max
{

1 + 2 logq s, 7
}

, we get that qx−1

x
> q

1
2

(x−1) ≥ s ≥ f(℘/p)
[FK :FF ]

.

But then if L = ℘, we would have that

degF p ≤ 1 + logq degK ℘

= 1 + logq
f(℘/p)

[FK : FF ]
degF p,

in other words,
qx−1

x
≤ f(℘/p)

[FK : FF ]
,

where x = degF p = degF L. Therefore, we either have that degF p ≤ max
{

1 + 2 logq s, 7
}

or L 6= p by the above inequality. In the former case, it follows that degK ℘ ≤
smax

{
1 + 2 logq s, 7

}
.

Suppose we are now in the latter case where L 6= p. Consider the representation

ψL : GK → AutA/L(φ1[L])× AutA/L(φ2[L]) ∼= GL2(A/L)×GL2(A/L)

where ψL = ρφ1,L × ρφ2,L. Let GL be the image of this homomorphism. Let CL be
the subset of GL consisting of pairs (a, b) such that the characteristic polynomials of
a and b are not equal. Note that CL is invariant under conjugation so it is a union
of conjugacy classes in GL. Since L 6= p, we have that CL 6= ∅, in particular, there is
some conjugacy class C ⊆ CL in GL with C 6= ∅.
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Let SL = S ∪ {primes l of K lying over L}. Then the Galois representation ψL is
unramified outside SL. We have that A/L ∼= F` where ` = qdegF L.

Let K̃/K be the field extension associated to ψL and let n (resp. n′) be its degree (resp.
geometric extension degree). Applying Corollary 3.4 to K̃/K, and using Lemma 2.2
together with the bound for the degree with respect to K of D = D(K̃/K) given in
Corollary 4.4, we deduce that there is a prime P 6∈ SL such that FrobP = C ⊆ CL and

degK P ≤
4

m0

logq
4

3
(B + 3g + 3) +m,

where

Σ′ =
∑
p∈SL

p ≥ Σ =
∑
p∈S

p,

degK Σ′ = degK radK ∆(φ1)∆(φ2) + degK L,

B = max {degK Σ′, degK̃ D, 2 |Gal(E/K ′)| − 2, 2} ,

degK̃ D ≤ rn′
(
`r − 1

q − 1
(2s degK a+ Λ(φ1, φ2)) + 2 degK radK ∆(φ1)∆(φ2) + 4 degK a

)
m = [FK̃ : FK ],m0 = [FK : FF ].

Then

degK P ≤
4

m0

logq
4

3
(B + 3g + 3) +m,

≤ 4

m0

(
logq

4

3
B + logq 4(g + 1)

)
+m,(26)

using B ≥ 2 and Lemma 5.4. Note that regarding B, the terms degK Σ′ and
2 |Gal(E/K ′)| − 2 are less than the bound we use for degK̃ D, so we can ignore
them later on when we bound B.

Using Lemma 5.4, we obtain

logq degK̃ D

= logq rn
′
(
`r − 1

q − 1
Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2) +

(
2s
`r − 1

q − 1
+ 4

)
degK a

)
≤ logq rn

′ + logq

(
`r − 1

q − 1
(Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) +

(
2s
`r − 1

q − 1
+ 4

)
degK a

)
≤ logq rn

′ + max {V1, V2} ,
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where

V1 := logq 2
`r − 1

q − 1
(Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2))

= logq 2 + logq
`r − 1

q − 1
+ logq (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) ,

and V2 := logq 2

(
2s
`r − 1

q − 1
+ 4

)
degK a

≤ logq 2 + logq 8s+ logq
`r − 1

q − 1
+ logq degK a

≤ V1 + logq 8s+ logq degK a.

Thus,

logq B ≤ logq rn
′ + V1 + logq 8s+ logq degK a

= logq rn
′ + logq 16s+ logq

`r − 1

q − 1
+ logq degK a+ logq (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) .

Since n′ ≤ n = |GL| < `2r2
, logq ` = degF L = degF a, and degK a ≤ s degF a =

s logq `, we finally obtain

logq B ≤ logq 16rs2 + (2r2 + r) logq `+ logq logq `+ logq (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) .

(27)

Note that if logq (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) = 0, the derivation of the
bound (27) above can be modified so as to obtain

logq B ≤ logq 16rs2 + (2r2 + r) logq `+ logq logq `.(28)

Thus, we have that

logq
4

3
B ≤ logq

64

3
rs2 + (2r2 + r + 1) logq `+ log∗q (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) .

(29)

Returning to (26), we obtain

degK P ≤
4

m0

(
logq 86rs2(g + 1) + (2r2 + r + 1) logq `(30)

+ log∗q (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2))
)

+m.(31)
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By construction of CL, we have that PP (φ1) 6≡ PP (φ2) (mod L). Thus, degK ℘ ≤
degK P , and from (25), it follows that

degK ℘ ≤
4

m0

(logq 86rs2(g + 1) + (2r2 + r + 1) logq `(32)

+ log∗q (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2))) +m

≤ 4

m0

(logq 86rs2(g + 1) + (2r2 + r + 1)(1 + logq degK ℘)

+ log∗q (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2))) +m.

As 1 + logq x ≥ 1,
logq x

x
≤ 1, we have that

degK ℘

1 + logq(degK ℘)
≤ 4

m0

(dr +W ),

where cr = 2r2 + r + 1, dr := cr + logq 86rs2(g + 1), and

W := log∗q (Λ(φ1, φ2) + 2 degK radK ∆(φ1)∆(φ2)) +mm0.

If x ≥ dr, then using Lemma 5.3 with c∗ = dr and x = degK ℘, we obtain

γxt
∗ ≤ x

1 + logq x
≤ 4

m0

(dr +W ),

where γ is as in Lemma 5.3. This implies that

xt
∗ ≤ 4

m0

(dr +W )

γ
,

so that

logq degK ℘ = logq x ≤
1

t∗
logq

4

m0

(dr +W ) ·
1 + logq dr

(dr)
1

ln(qdr)

(33)

≤ s∗
(

logq
4

m0

+ logq(dr +W ) + logq(1 + logq dr)−
1

ln(qdr)
logq dr

)
≤ s∗

(
logq

4

m0

+ logq dr + logqW + logq(1 + logq dr)−
1

ln(qdr)
logq dr

)
≤ s∗

(
logq

4

m0

+ logqW + logq logq dr

)
+ logq dr,

using dr,W ≥ 2, and where t∗ = ln(qdr)−1
ln(qdr)

and s∗ = s∗q,r = 1
t∗

= ln(qdr)
ln(qdr)−1

. We note

when q or r is large, s∗q,r tends to 1 from above.

25



Substitution of (33) into (32) yields

1

4
degK ℘ ≤ logq 86rs2(g + 1) + cr(1 + logq degK ℘) +W

(34)

≤ logq 86rs2(g + 1) + cr

(
1 + s∗

(
logq

4

m0

+ logqW + logq logq dr

)
+ logq dr

)
+W

= logq 86rs2(g + 1) + cr

(
1 + s∗ logq

4

m0

+ logq dr

)
+ crs

∗ logq logq dr

+W + crs
∗ logqW

= Cq,r +W + crs
∗
q,r logqW,

where

Cq,r = logq 86rs2(g + 1) + cr

(
1 + s∗q,r logq

4

m0

+ logq dr

)
+ crs

∗
q,r logq logq dr.

Therefore, we either have the above upper bound (34) on degK ℘ or degK ℘ ≤ dr ≤
Cq,r, so in the end, we get

(35) degK ℘ ≤
4

m0

(
Cq,r +W + crsq,r logqW

)
.

Finally, we note from the discussion in the introduction that m ≤ gφ1gφ2 .

6. The case of rank 2

In this section, we consider the case of rank 2 and K = F , and explain how to make
all the terms explicit in our isogeny theorem.

For a Drinfeld A-module φ of rank 2 over K = F = Fq(T ), the successive minima of
the lattices associated to the uniformizations of φ are determined in [2] and this is used
to obtain an explicit bound for the valuation v∞(D(K∞(φ[a])/K∞)) of the different
of Kφ,a = K(φ[a]) over K at the infinite prime ∞ of K and vp(D(Kp(φ[a])/Kp)) at a
finite prime p of K, following the work of [9].

The infinite prime case is obtained using the explicit information about the Newton
polygon of the exponential map eφ,∞ attached to φ from its uniformization over C∞.

Assume the same notation as in the proof and statement of Proposition 4.3, taking
K = F = Fq(T ) and ∞̄ =∞, the explicit bounds given in [2] are as follows.
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Let φT = T + a1τ + a2τ
2, j(φ) = aq+1

1 /a2, and m be the least positive integer such
that −v∞(j(φ)) ≤ qm+1. Then we have

v∞(D(K∞(φ[a])/K∞)) ≤

{
1 if − v∞(j(φ)) ≤ q

1 + κ (qκ+1 − 1) if q < −v∞(j(φ)) ≤ qm+1,

where κ = −v∞(j(φ))−qm
qm(q−1)

+m− 1, and

vp(D(Kp(φ[a])/Kp)) ≤


2vp(a) if φ has good reduction over Kp,

2vp(a) + 1 if vp(j(φ)) ≥ 0 and φ has

bad reduction over Kp,

2vp(a) + 1− 2
q−1

vp(j(φ)) if vp(j(φ)) < 0.

Putting this together yields the following explicit bound on the different divisor of
F (φ[a])/F when φ has rank 2, which can be used in place of the more general bound
that we use in this paper. See Section 7 for a comparison of the two bounds in the
context of our application.

Theorem 6.1. Let φ be a Drinfeld A-module of rank 2 over F , and let D(F (φ[a])/F )
be the different divisor of F (φ[a])/F . Then

degF D(F (φ[a])/F ) ≤ 2 degF a+ degF η +
2

q − 1
degF δ

+ v∞(D(F∞(φ[a])/F∞))

where δ is the (monic) denominator of j(φ) as represented by a fraction in reduced
form, and η is the product of finite primes p such that φ has bad reduction over Fp.

Concerning the term gφ, we have from [6] that

gφ = gφ,∞ ≤ (q2 − 1)(q2 − q)ν2,φ,∞/ν1,φ,∞

where νi,φ,∞ is the i-th successive minima of φ associated to its uniformization over
C∞. In [2], the νi,φ,∞ are determined as follows.

Case 1: If −v(j(φ)) ≤ q, then ν1,φ,∞ = ν2,φ,∞ = −s1,

Case 2: If q < −v(j(φ)) ≤ qm+1, then ν1,φ,∞ = −s1, ν2,φ,∞ = −s1 − κ,

where s1 = v(a2)+q2

q2−1
in Case 1 and s1 = v(a1)+q

q−1
in Case 2, and m,κ are as above.

7. Comparison with work of Gardeyn

In this section, we make some detailed comparisons with the work in [6], where an
effective isogeny theorem is proven.
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For the proof of our Theorem 1.2, an essential ingredient is the bound on the different
divisor given in Proposition 4.3,
(36)

degK D(Kφ,L/K) ≤ r

(
`r − 1

q − 1
(s degK a+ Λ(φ)) + 2 degK radK ∆(φ) + 2 degK a

)
,

where we recall Λ(φ) = −
∑

v τv(φ) degK v. The counterpart of (36) in [6] is

degK D(Kφ,L/K) ≤ r degK a+ degK ∆φ(37)

where ∆φ is a divisor of K which is determined from the Newton polygons of the
exponential functions associated to uniformizations of φ over C℘, where ℘ is a prime
of K.

Although there is a larger dependence on ` in our different bounds when we take
degrees with respect to K, what is required in the application is the degree with
respect to Kφ,L, which necessitates multiplying the degree with respect to K by

n′ < `r
2
. This means both bounds end up being comparable in their dependence on

`, as we later take the logq of this degree with respect to Kφ,L.

The quantity ∆φ is more difficult to make explicit and compare, as we saw in Section 6,
where its determination in the case of rank 2 and K = F = Fq(T ) is recalled from
[2]. The method in [2] yields the entire Newton polygon and uses Gekeler’s theory of
Drinfeld modular forms as well as Rosen’s theory of formal Drinfeld modules. It may
be possible to obtain weaker information using the more elementary approach of [3]
in the infinite prime case, and to generalize Rosen’s work to higher rank in the finite
prime case, in such a way that Gardeyn’s bounds can be made explicit.

As for the terms gφ, it would seem that this also requires some knowledge relating
to the successive minima of the lattices associated to the uniformization of φ over
infinite primes.

Finally, two other places of difference are in our use of [12] for the Chebotarev Density
Theorem instead of [8], and in our analytic estimation methods, which differ slightly
from both [6, 16], because we have attempted to reduce the size of the constants in
the different divisor bound, especially in front of the dominating terms.
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