ON THE EQUATION a2 + b%? = ¢°
IMIN CHEN

ABSTRACT. Using the method of Galois representations and modular forms, we show
that the generalized Fermat equation a? + b?? = ¢ does not have any non-trivial
proper solutions if p > 17 is a prime such that p = 1 (mod 4). In order to apply
the method, we use Q-curves defined over quartic extensions of Q and consider the

abelian varieties of GLs-type attached to them.

A solution (a, b, ¢) € Z3 to the equation a®+ 0%’ = ¢ is said to be non-trivial if ab # 0
and proper if (a,b,¢) = 1. This equation is a special case of the generalized Fermat
equation x” + y? = 2" which has been the focus of much interest since the resolution of
Fermat’s Last Theorem (cf. [18] and its references for a survey of recent work in this
area).

In this paper, we show the following result.

Theorem 1. Let p > 17 be a prime such that p = 1 (mod 4). Then the equation

a® + b* = ¢® does not have any non-trivial proper solutions.

The method uses Galois representations and modular forms. A new feature which
arises for this equation is the use of Q-curves defined over quartic extensions of Q
and the abelian varieties of GLa-type attached to them. To handle the Q-curves in
the method, we use the results developed in [12], where the use of Q-curves was first
introduced. However, to deal with Q-curves defined over quartic extensions of Q, it is
necessary to use some results from the theory of Q-curves [15] [26] [23] [13] and make
them sufficiently explicit.
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Finally, we note the overall strategy still cannot handle certain primes p due to our

inability to apply Mazur’s method to analyze the rational points on certain modular

curves with non-split Cartan level structure (cf. Remark 3.7 in [12]).

1. SETTING UP THE PROBLEM

We begin by recalling the parametrization of proper solutions to the equation z? 4

y? = 25,

Lemma 2. A triple (x,y,2) € Z3 with (z,y,z) = 1 satisfies 2*> + y* = 2° only if
(z,y,2) = (u(ut — 10u?v? 4 501), v(v* — 100%u? + 5ut), u? + v?) for some (u,v) € Z?
with (u,v) = 1.

Proof. This follows from factoring over the Gaussian integers. OJ

Lemma 3. Let p be an odd prime. Suppose (a,b,c) € 7?3 satisfies a* + b*P = ¢ with
(a,b,c) =1 and ab # 0. Then there exists (s,t) € Z* with (s,t) = 1, st # 0, and such
that the following properties hold:

o 52— 10st + 5t* = 579P where 51 v

ev=70and j=0 orv=>5"18" and j =1, where 513 and k > 1

o s =102t =1

Proof. As (u,v) = 1, we have that (v,v* — 10v*u? 4+ 5u?) | 5. Setting y to be a p-th
power in Lemma 2, we obtain a solution to
vt — 100%u? + 5ut = 574
where (u,v) =1, uv #0, 51~ and j > 0. Setting s = v, t = u? we have that
s? — 10st + 5t* = 5/4P.

Since in fact (v v* — 10v%u? + 5ut) | 5, we either have 51 s and j = 0 or 5 | s and
j = 1. Thus, we either have v = 3” and j = 0 or v = 5?7137 and j = 1, where 51 3
and £ > 1. O
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For the equation a? + b?? = ¢, one can set both = and y to be a p-th power and
consider the resulting diophantine equations. Bennett [3] has shown these equations
can be resolved using the results in [4].

It is perhaps instructive to discuss in more detail how the argument proceeds. If we
use the constraint that y is a p-th power, we can complete the square in the following

way to obtain a solution to an equation of the form Aa™ + Bb"™ = C¢?,

vt — 100%u? + 5ut = 5(u? — v?)? — 4o

5(u? —v?)? — 4B = 4P if j=0

5(u? — %) — 4 5UAg = 5yrif =1,

In [4], this class of generalized Fermat equations was extensively studied from the
point of view of the modular method. The Frey curve attached to a solution (', ¥, )
is isomorphic over Q to Y2 = X3 + 2¢CX? 4+ BOV"X and tries to solve the initial
constraints that v, s> — 10st + 5t% are p-powers up to S-units for a finite set of primes
S.

Unfortunately, in the case of j = 0, the solution corresponding to (u,v) = (0,1)
persists for all p and the Frey curve [4] corresponding to this solution does not have
complex multiplication. This is a situation for which one is not currently able to apply
the modular method to a obtain a full result in every congruence class. In the case
of j = 1, that is, when 5 | y, there is an obstructing newform in S5(T'¢(40)) which
prevents a resolution in the situation when a’d’ is odd.

Some partial results are possible however. For instance, one can give a computational
criterion for resolving specific primes p when 5 | y, using the technique of [17] (cf. also
[9]). Also, one has a resolution for p > 7 and y even using the results in [4]. Because

5

of the symmetry between a and b in the equation a® + b* = 25 we may assume y is

even, hence Bennett’s result [3].
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Lemma 4. Let p be an odd prime. If s> —10st +5t* = 579? where j € {0,1}, 51, and
s,t € Z are coprime squares, then s 2t (mod 2) and s> — 10st + 5t* is not divisible by
2.

Proof. If s =t (mod 2), then s =t (mod 8) and s, # 0 (mod 2) as s, are coprime
squares. Then we would have that 5777 = s> — 10st + 5t*> = —4s> (mod 8). This is a

contradiction if p is an odd prime. O

Lemma 5. Let p be an odd prime. If s* — 10st + 5t* = 579P where j € {0,1}, 51,

and s,t € Z are coprime squares, then s> — 10st + 5t2 is not divisible by 3.

Proof. We note that s —10st+5t* = s*—st—t? (mod 3) is irreducible when considered

as an element of Fsls, t]. O

For the next two lemmas, we note that v* — 100t + 5t2 = 5(t — v?)? — 4v* so integer

solutions to v* — 10v%t + 5t? = ¢ give rise to integer solutions to 5Y? — 4X* = ¢.
Lemma 6. If (v,t) € Z* satisfies v* — 100t + 5t = +1, then v = +1 and t = 0.

Proof. We use the Elliptic Curves package in MAGMA [5] to determine the integer
points on the quartic equation 5Y? = 4X* £ 1. O

Lemma 7. If (v,t) € Z* satisfies v* — 10v%t + 5t = £5, then v =0 and t = +1.

Proof. We use the Elliptic Curves package in MAGMA [5] to determine the integer
points on the quartic equation 5Y? = 4X* £ 5. O

Corollary 8. Let p be an odd prime. Suppose (a,b,c) € Z? satisfies a® + b*P = ¢ with
(a,b,c) =1 and ab # 0. Let s,t be as in Lemma 3. Then s?> — 10st + 5t2 is divisible by

a prime not equal to 2,3, 5.

Proof. By Lemmas 3, 4, and 5, we see that if s> — 10st + 5t? is only divisible by the
primes 2, 3,5, then s? — 10st + 5t = £1, 5. The result then follows from Lemmas 6
and 7. 0
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2. Q-CURVES AND ABELIAN VARIETIES OF GL5-TYPE

Let K be a number field and let C' be an elliptic curve defined over K such that
there is an isogeny pc(o) : °C' — C defined over K for each o € Gg. Such an elliptic
curve C' is called a Q-curve defined over K. This notion was originally defined and
studied for a CM-elliptic curve [15] [6], but was extended by Ribet [26] to the non-CM
case using different methods. Further explicit considerations were developed in [23]
which we will use in the sequel. The exposition below of the theory follows closely the
citations above as well as [13].

From here on, we choose the isogenies so that jic (o) factors through Gk g and pic(o)
is the identity on Gi. Furthermore, when we speak of a Q-curve, we will assume that
1t does not have complex multiplication.

Let co(o,7) = pc(0)uo(t)pc(or)™ € (Homg(C, C) ®z Q)* = Q*, where ug' =
(1/ deg puc) i and puif is the dual of pe. Then co (o, 7) determines a class in H(Gg, Q%)
which depends only on the Q-isogeny class of C. The class co(o, 7) factors through
H*(Gk/g,Q*) and this class depends only on the K-isogeny class of C. Moreover,
co(o,7) in fact lies in H?(Gg, Q*)[2].

Tate (cf. [28, Theorem 4]) showed that H?(Gg, Q") is trivial where the action of Gg

on @* is trivial. Thus, there is a continuous map 5 : Gg — @* such that

colo, ) = B(a)B(r)B(or)

as cocycles in H 2(G@,@*). In such a case, we say that 3 is a splitting map for C' (or
more precisely, for co(o, T)).

Let A be an abelian variety defined over Q. The endomorphism algebra Endg A of
A is defined as the ring of endomorphisms of A defined over Q tensored over Z with
Q. Let R¢ be the Q-algebra generated over Q by A, for o € G /g with multiplication
given by Ao.cco(0,7) = A, A;, where we recall that cc(o,7) = pc(o) pe(T)uc(or)™?
depends the function pe. Consider the restriction of scalars Resg C, for which we

recall its defining functorial property that Hom(.S, Resg () < Hom(S ® K,C). There
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is a natural isomorphism

Rc — Endg Resg C

which sends A\, to the endomorphism of Resg C' defined by
P = "nuc(o)(P)

on 7"C.

Given a splitting map ( for C, we now enlarge K if necessary so that ( factors
through Gk /q. The map given by A\, — [((0) gives a surjective homomorphism R¢ —
Mg = Q(B(0)). As R¢ is a semi-simple Q-algebra, there is a projection from R¢
onto the isomorphic copy of Mz in R¢. Let Ag be the image of this projection in the
category of abelian varieties defined over Q up to isogeny over Q.

We note the following twist on the construction of Ag above which is useful in practice
to minimize the degree of the extension K required (recall K needs to be large enough
so both co(o,7) and 3(0) factor through Gg/g). Suppose that as 2-cocycles we have
that

co(o,7)e(o,7) = B(o)B(T)B(o7)

where €(o,7) is the 2-coboundary obtained from a 1-cocycle U‘T? where v € Q. By
the way twisting affects the cocycles co (o, 7) [23, p. 291] we see that the twist C., of C

is such that
co,(0,7) = co(o,7)e(o,7) = B(0)B(7)B(oT) "

Thus, replacing C' by C., allows us to only require that K be large enough so that 3(o)
factors through G /q.

Recall an abelian variety defined over Q of GLa-type is one whose endomorphism
algebra is isomorphic to a number field M of degree equal to the dimension of the
abelian variety. An abelian variety defined over Q of GLa-type attached to a Q-curve

C is one which has C as a quotient over Q.
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Theorem 9. The abelian variety Ag is an abelian variety defined over Q of GLy-type
attached to C', with endomorphism algebra isomorphic to Mg.

Proof. cf. [26, Theorem 6.1]. O

Proposition 10. If A is an abelian variety defined over Q of GLa-type attached to a

Q-curve C, then A 1is isogenous over Q to some Ag where 3 is a splitting map for C.
B

Proof. If C'is a quotient of A defined over K, then there is a non-zero homomorphism
A — Resg C defined over Q. Since A is simple up to isogeny over Q, it follows that
A is a quotient defined over Q of Resg C. As R¢ is a semi-simple Q-algebra, there is
a projection R¢ — Endg A given by A\, — (o) say. We now see that [ is a splitting
map for C, and that Ag is isogenous over Q to A. O

Proposition 11. Suppose that R¢ is a product of fields. Then ResgC 1S 1S0genous
over Q to a product of pairwise non-isogenous abelian varieties defined over Q of GLo-
type, each of the form Ag where 3 is a splitting map for C. Furthermore, Ag, is
isogenous over Q to Ag, if and only if By = °B1 for some o € Gg.

Proof. cf. [23, Proposition 5.1, Lemma 5.3]. O

For an abelian variety A defined over Q, let V,,(C') denote the Q,[Gg]-module which

is the p-adic Tate module of C' tensored over Q,.
Proposition 12. Vp(Resg C) 2 Re @ V,(C) as Re @ Q,[Gol-modules.

Proof. The proof is a modification of [26, Corollary 6.6]. Recall that it is given that
C is a Q-curve defined over K and let A = Resg C. There is an isomorphism A &
Bg = HaeGK/Q ?C defined over K by the defining property of restriction of scalars.
Let Tk = HUeGK/Q Cy where C, = C for all 0 € Gkq. There is an action of R¢
on Tk with A, taking the factor C, to the factor Cy, via multiplication by cc(g, o).
Let ¢+ : Tx — Bg be the map which takes the factor C, to the factor °7'C' via the

map Ufl,uc(a). Then ¢ is a R¢[Gkl-equivariant isomorphism. By the defined action
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of Re on Tk, we have that V,(Tx) = Re ® V,(C) as Re @ Q,[G]-modules. Hence,
V,(A) = V,(Bg) = Re @ V,(C) as Re ® Q,[Gx]-modules. The action of Gg on A
can be transferred to an action of G on Tk via the isomorphisms A = By = Tk.

From this, it can be shown that the explicit action of Gg on the R¢ ® Qp,-module
V,(4) = Re @ V,(C) is given by

@y - Ao @ (Tuelr ™) (7).
]

From Proposition 12, it follows that V,(A3) & Mz® V,(C) as Ms® Q,[Ggl-modules.
Picking a prime 7 of Mz above p, we get a representation po s : Gog — GLa(Mp).
The explicit action of Gg on the Mz ® Q, module V,(Ag) is then given by

_ T _ —1
@y a-Bo)@ (Tne(r™) (7)),
which can be simplified to the expression
z®y =z f(0) @ pc(r)(1(y)).

Hence, if we regard My, as a subfield of Q,, then pc g, is a representation to @; :
GL3(Q,), and it satisfies Ppcgr |ap= ]P’éc,p, where ¢Zo7p : Gg — GL»(Q,) is the
representation of G on V,(C).

Let 5 : Gg — Q be defined by
es(0) = B(0)*/ deg pic (o).
Then €g is a character and
(1) det pogr = €5+ Xps

where X, : Gg — Z, is the p-th cyclotomic character.
Given two splitting maps 3, 3’ for C, there is a character x : Gg — Q" such that
(' = x0B. Conversely, if § is a splitting map, then ' = x[ is a splitting map for any
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character x : Gg — @* When Mg = Mgz, we see that pc g » = X ® pc g, are twists of
each other, as are Ag and Ag.

We say that a Q-curve C' is modular if for some positive integer N it is the quotient
over Q of Jy(N). If a Q-curve C' is modular, then there is a newform f € S(I'o(N), e 1)
such that Ay is an abelian variety defined over Q of GLy type attached to C. This
follows because J;(N) decomposes into product of Af’s up to isogeny over Q [25]. By
Proposition 10, Ay is isogenous to Ag for some splitting map 3, and hence for some
splitting map (3 for C' we have that pc g. = py.r for some newform f € Sy(To(N), e ).
Since any two splitting maps differ by a character, we see that for every splitting map
 we have that pc g, = psr for some f € Sa(To(N),e ). Conversely, if pogr = prar
for some newform f € S3(I'o(N),et), then Ay is isogenous over Q to A; and hence
the Q-curve C' is modular.

In summary, we have shown that pc g, = psn for some f € So(Io(N),e ) if and

only if the Q-curve C' is modular.

3. Q-CURVES ARISING FROM THE EQUATION a® + b?? = ¢°

Let p be an odd prime. Suppose (a, b, c) € Z? satisfies a* + b* = ¢® with (a,b,c) = 1
and ab # 0. Recall that Lemma 3 tells us that there exists (s,t) € Z* with (s,t) = 1,
st # 0, and such that

o 52— 10st + 5t% = 579P where 51~
ev=/"and j=0orv=5""138 and j =1, where 51 3 and k > 1
2

o s =02 t=1u’

Consider the elliptic curve E* defined over Q(v/5) given by
2) E:Y?2=X3_35 ((3 +2V5)s — 3t> X + 4o ((17 — 4/5)s — (45 — 18\/5)15)
where § = <%), n=r"73 and kK = #ﬁ Then

(3) Ape =20.38. 5773 <s —(5+ 2\/3)75)2 (s —(5— 2\/5)15)
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and

2. 5v5 -0+ ((3+2V5)s —3t)°
(s— (5+2VB))" (s — (5 —2vB)t)

The Q-curve E* tries to solve the initial constraints that s is a square and s% —10st 4 5¢2

(4) JEs =

is a p-power up to S-units for a finite set of primes S.

Consider in addition the elliptic curve E* defined over Q(1/5) given by
(5) Et:Y? :X3—3-22-\/5(3s— (15— 10\/§)t)X+25-5u (93— (45—14\/5)75) .
Then

(6) Ap =212.35.5/5. (s 5+ 2\/3)t>2 <s —(5- 2\/5)t)

64(3s — (15 — 10v/5)t)3
(s— (5+2V5)1) (s — (5— 2VB)t)

The Q-curve E? tries to solve the initial constraints that ¢ is a square and s? — 10st 4 5¢2

(7) JEt =

is a p-power up to S-units for a finite set of primes S.
The superscript in E* and E' are intended to label the two different Frey curves

attached to a solution.

Proposition 13. Assume s/t € Q. The j-invariant of E® does not lie in Q unless

e s/t=0,7=1728
e s/t=1,7=38000

Proof. The j-invariant of E* lies in Q(v/5), so is of the form o 4 $v/5. Setting 3 = 0
gives a system of equations which can be solved in MAPLE. O

Proposition 14. Assume s/t € Q. The j-invariant of E* does not lie in Q unless
o 5/t =00,5=1728
e s/t =55 =8000.
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Proof. The j-invariant of E? lies in Q(1/5), so is of the form a + 3v/5. Setting 3 = 0

gives a system of equations which can be solved in MAPLE. 0

The elliptic curves with complex multiplication by an imaginary quadratic order O

of class number 2 are listed below (c.f. [20], [33]).

d(0) J

—15 (—191025 + 85995v/5) /2

—20 632000 + 282880+/5

—24 2417472 4 1707264+/2

—35 —58982400 =+ 26378240+/5

—40 212846400 + 95178240/5

—51 —2770550784 4+ 671956992v/17

—52 3448440000 + 956448000+/13

—88 3147421320000 =+ 2225561184000+/2

—91 —5179536506880 + 1436544958464+/13

—115 —213932305612800 + 95673435586560v/5

—123 —677073420288000 + 105741103104000v/41

—148 19830091900536000 + 3260047059360000+/37

—187 —2272668190894080000 =+ 551203000178688000+/17

—232 302364978924945672000 £ 56147767009798464000+/29

—235 —411588709724712960000 + 184068066743177379840+/5

—267 —9841545927039744000000 4 10432017818647326720001/89

—403 | —1226405694614665695989760000 & 3401437397272467419381760001/13
—427 | —7805727756261891959906304000 + 999421027517377348595712000/61
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Proposition 15. Assume s/t € Q. The elliptic curve E® does not have complex
multiplication unless

e s/t=0,7j=1728,d(0) = —4

e s/t =1,7=28000,d(O) = -8

o s/t =1/2,j = 632000 — 282880+/5, d(0) = —20

o s/t =9, j = 212846400 + 95178240+/5,d(0O) = —40

o s/t =9/17,j = 212846400 — 95178240+/5, d(O) = —40

e 5/t = 00,j = 632000 + 282880+/5,d(O) = —20

Proof. Since the j-invariant of E* lies in Q(v/5), we note that if £ has complex multi-
plication, then the ring of its endormorphisms defined over Q is an imaginary quadratic
order O of discriminant d(O) = —15, —20, —35, —40, —115, —235 or j(E*) € Q. For
each of the corresponding values of the j-invariant, we can use MAPLE to compute

the possible values for s/t € Q. O

Proposition 16. Assume s/t € Q. The elliptic curve E' does not have complex
multiplication unless

e s/t =>5,7=28000,d(O) =-8

e s/t = 10,7 = 632000 + 282880+/5,d(O) = —20

e s/t =0,j = 632000 — 282880+/5, d(O) = —20

o s/t =85/9,j = 212846400 + 95178240+/5, d(O) = —40

o 5/t =15/9,j = 212846400 — 95178240+/5, d(O) = —40

o s/t =o00,7=1728

Proof. Since the j-invariant of E* lies in Q(+/5), we note that if £ has complex multi-
plication, then the ring of its endormorphisms defined over Q is an imaginary quadratic
order O of discriminant d(O) = —15, —20, —35, —40, —115, —235 or j(E') € Q. For
each of the corresponding values of the j-invariant, we can use MAPLE to compute

the possible values for s/t € Q. O
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Corollary 17. If s,t satisfy the conditions from Lemma 3, then E® does not have
complex multiplication unless

e 5/t =0,7=1728,d(0) = —4

e 5/t =00,j = 632000 + 282880+/5,d(O) = —20

Proof. We eliminate the cases s/t = 9, j = 212846400 + 95178240+/5, d(O) = —40 and
s/t = 1,j = 8000,d(Q) = —8 because p is an odd prime (cf. Lemma 4). The other

cases are eliminated because s/t is a square. 0J

Corollary 18. If s,t satisfy the conditions from Lemma 3, then E' does not have
complex multiplication unless

e s/t =0,j = 632000 + 282880+/5, d(©) = —20

o s/t =00,j =1728,d(0) = —4

Proof. The other cases are eliminated because s/t is a square. 0J

Assume that s, t satisfy the conditions from Lemma 3. The elliptic curves E*, E*
are Q-curves defined over Q(v/5,v/2) as long as s/t # 0,00 by Corollary 17 and 18.
We note that £ = E% E' is not a Q-curve defined over Q(\/g) because the 2-isogeny

between E and its conjugate under v/5 — —+/5 cannot in general be defined over

Q(V5).
4. SPLITTING MAPS AND MODELS OF (Q-CURVES

Let E = E® or E*. We have constructed representations pg g~ : Gg — GL2(Mps,)
attached to the Q-curve E. However, the construction depends on a choice of splitting
map 3 : Gg — Q" for E, which is related to picking a Q-curve E’ defined over K’ in the
Q-isomorphism class of E such that the decomposition of ResQ E’ up to isogeny over
Q is a product of non-isogenous abelian varieties of GLo-type (see previous discussion
in Section 2).

Let G5 = {o1,05}. There is a 2-isogeny E — E defined over Q(V5,v?2),

whence we set pg(os) to be this isogeny and pg(oq) = 1. The cocycle cg(o,7) =
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p1e(0) “pg (1) (o)t can also be described as arising from a cocycle ay € H'(Gg, Q /Q*)
given by pgp(o)*(wg) = ap(o)we, with wg, we being the invariant differentials on F,

E' = ?E, through the formula
cp(o,7) = ag(o)’ag(t)ag(or) ™!,
which results from the map
H'(Gq,Q'/Q") — H*(Gg, @),
which is derived from the short exact sequence
1-Q"' -0 -Q/Q —~1
Explicitly,

OéEs(0'1> =1

B

1+
aps(os) = 7

apt(oy) =1

g (o5) = V2.

This can be computed using the discussion in [23, p. 288].
Consider first £ = E°. Let G55 = {01,02,05,010}. Then cp(o,7) factors
through this group and has the representative values
CE(O'Q, O'2> =1
CE(0'107010) =2

CE(0'27 010) = —CE(U10, 02)-

It follows that Rp = M>(Q) and hence Res%(\/g’ﬂ) E is isogenous over Q to B x B
where B is an abelian surface defined over Q with Endg B = Q. This means that
taking K’ = Q(\/S, \/5) and E' = FE is not a suitable choice for our purposes because
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Q(V5,v2)

the decomposition of ResQ( E up to isogeny over Q does not include any abelian

varieties of GLa-type.

Proposition 19. The map on cocycles given by
c(o, 1) — (sgnce(o, 1), |c(o,T)])
mduces an isomorphism
H*(Gq, Q")[2] — H*(Go.{£1}) x H*(Gq, P/P?)
where P is the group of positive rational numbers.
Proof. cf. [23, p. 294]. O]
We call ¢* (0, 7) = sgnc(o, 7) the sign component of ¢(o, 7).

Proposition 20. The sign component c5(o,7) € H*(Gg, {+1}) of cx(o,T) is given by
the quaternion algebra (5,2) € H*(Go, {£1}).

Proof. Let d(o) = degpugr(o) be the degree map. In the terminology of [23, p. 294],
we have that {a1} = {5} and {d,} = {2} are dual bases with respect to d(c). The

conclusion then follows from [23, Theorem 3.1]. O

Let € : Gg — Q be a character and let 6.(o,7) = \/6(0)\/6(7’)\/6(0’7’)71. Then
b.(o,7) € H*(Gg, {£1}).

Proposition 21. Let (0) = \/e(0)\/d(c). Then B(o) is a splitting map for E if and
only 0.(c,7) = c5(0,7) as classes in H*(Gg, {+1}).

Proof. cf. [23, Theorem 4.2]. O

Proposition 22. We have that 0.(c,7) = c¢i(0,7) as classes in H*(Gg, {+1}) if and
only if 0.(0,7) = ci(0,7) as classes in H*(Gq,, {£1}) for all finite primes p.

Proof. cf. [23, p. 302]. O
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Proposition 23. H*(Gq,, {£1}) = {£1} for all finite primes p.

Proof. This follows from the fact that H?*(Gg,,{£1}) is contained in the 2-torsion of
H 2(G(@p,@;) which can be identified with isomorphism classes of simple algebras over
Q, with center Q, and dimension 4 over Q,, namely, quaternion algebras over Q, (c.f.
27, Chapitre X, §5, Chapitre XIII, §4]). It is also known that over Q,, there are

precisely two isomorphism classes of quaternion algebras (c.f. [34, Theorem 1.1]). O

Proposition 24. We have that 0.(0,7), = €,(—1) as classes in H*(Ggq,, {£1}) =

{£1}.
Proof. cf. [23, p. 302]. O

The above results imply that a possible choice of splitting map 3 for E is given by

(8) Blo) = Velo)Vd(o),

where d(0) = deg ugp(0), € = €4€5, and €, is the non-trivial character of (Z/47)*, and
€5 is a non-trivial character of (Z/5Z)*. For this choice of 3, we have that eg = € and
Mg = Q(i). The character € has kernel {1}, regarded as a character of (Z/20Z)*. To
fix choices, let us suppose that ¢(+3) =i € C.

Explicitly, the coboundary relating the cocycles cg(o, 7) and cg(o, 7) = 8(0)8(7)B(o7) !
can be described as follows. We will use this coboundary to find a Q-curve E3 defined

over a number field K3 in the Q-isomorphism class of E such that cg, (0, 7) = cg(0,T)

as cocycles (not just as classes).

Let ay(0) = aE(U)ULWTI, where vy, = 5+2\/5. Then we have that
041(0'1> =1

041(0'5> = \/§

Recall that the cocycles a(o), ay (o) have values in @ /Q* so any equality is regarded

up to multiplication by an element in Q*.
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We wish to find a v, such that

(9) az(0) = (o)

satisfies
cs(o,7) = aa(0) “an(T)ag(or) .

Let K5 = Q(2) where z = /225 is a oot of X* —5X%+5 and let G, /g = {of, 05 }.

The unit group of K3 is generated by

Ulz—l
Uy =2 — 22
Uz = —22 + 242

ug=—24+22432-3

and is isomorphic to Z/2Z x 7 X Z x Z.
ot
Let g = ag(os). Then % = % is a necessary constraint on g using Equation (9).
As an initial guess, let us suppose that % = u is a unit in K. This unit u =2 — 2

can be obtained by noting (2) = (¢°) in Kp. Since N /q(u) = 1, by Hilbert 90, there

is a 72 € Kp such that % = u, where ¢ = 0. This 75 can be obtained from the

expression

2 2 3
,}é =z —|—UZG 4 u1+aza 4 u1+0+0' ZO’

used in the proof of Hilbert 90. Then up to scaling by an element in Q*, we may take

v =& =284 2% - 2z

V2
o'ﬁ
VA

Finally, if we let as(0) = ag(o) where

v =22(22 + 22 — 22)
=32 +52° =525

= 23/u3,
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then the cocycle in H?(Gg, Q*) arising from as () is precisely cs(o, 7) = 8(0)8(7)B(o7) 1.

For this fact, we list for convenience the following values

which show that ay(o) has values in K.

Let Ej3 be the Q-curve defined over K in the Q-isomorphism class of E given by

(10) Y2 = X7 - 35 ((3+2v5)s — 3) 12X

+ 4v ((17 — 4V/5)s — (45 — 18\/5)15) 73

where 6 = <#>, n=r"73 and kK = _1;”/5 = —1/us.

Let ag,(o) be the cocycle in H'(Gq,Q"/Q*) given by 1y (0) (wE,) = ap,(0)ws,
where Ej; = “Ej. From consideration of how twisting affects the ag(o) [23, p. 291],
we have that

Uﬁ

ap,(0) = ap(o)—= = ax(0).

VY

The values as(0) lie in K. Hence, if we use Ejg instead of E, then Ej is a Q-curve

defined over K3 and we have that
cgy(0,7) = cg(o,7) = B(o)B(T)B(or) !

as cocycles.

Now work of Quer [23, Theorem 5.4, Case (2)] implies that

Resgﬁ Eﬁ ~Q Aﬁ X Aﬁ/,
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where Ag, Ag are abelian varieties defined over Q of GLy-type with endomorphism
algebra Q(i). Here, 8’ = x - [ is a splitting map such that ez = € and y = (5) is the
quadratic character attached to Q(\/g)

A similar calculation can be made for £ = E* with exactly the same 3 as above but

v = 23+ 2% — 2z. For this, it is convenient to simply note that ag:(c) = ay (o).

Proposition 25. The elliptic curve E = E* (resp. E = E') has the following proper-

ties.

e F has potentially good ordinary reduction in characteristic 3 if s Z 0 (mod 3)
(resp. t Z 0 (mod 3)) and potentially good supersingular reduction in charac-
teristic 3 if s =0 (mod 3) (resp. t =0 (mod 3)).

e The sign component c5(o,7) = sgn pup(o) up(T)pe(cr)™t € H*(Gg, {£1}) is

trivial when restricted to Gg,.

Proof. The elliptic curve E has potentially good reduction because the denominator
of its j-invariant is not divisible by a prime above 3 by Equation (4) and (7) and
Lemma 5. Its j-invariant is zero in characteristic 3 if and only if s =0 (mod 3) (resp.
t =0 (mod 3)) so E is supersingular in characteristic 3 if and only if s = 0 (mod 3)
(resp. t = 0 (mod 3)). Since the sign component ¢ (o, 7) is given by the quaternion

algebra (5,2) by Proposition 20, we see that it is trivial when restricted to G,. U
Theorem 26. The abelian varieties Az and Ag are modular.

Proof. In the case of potentially good ordinary reduction, F satisfies the hypotheses of
[13, Theorem 5.1] because of Proposition 25 so we deduce that it is modular. In the
case of potentially good supersingular reduction, we note that Ppg g, is unramified at

3 so by [13, Theorem 5.2] we also deduce that E is modular. O

The abelian varieties Ag and Ag are not isogenous over Q since 3’ # °3 for any

o € Gg. Let f and f’ be the newforms attached to Az and Ay respectively.
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Theorem 27. Ay is isogenous over Q to a twist of Ag by x ™' = x = (é) and hence

fis a twist of f by x P =x = (é)
Proof. This can be seen from the Galois action on the Tate module of Ag and Ag
which is given by

r®y—a-f(o) @ pup(T)(7(y))

@y >z F(0) @ pp(r)(7(y)).

Since ' = x - 3, we see that

pag (o) =€ (0)papr(o),

where 7 is a prime of My = Mz = Q(i) above p. O
5. SERRE INVARIANTS ATTACHED TO Q-CURVES

For £ = E* or E*, let
pesx: Go — F,GLa(F,)
be the reduction of pg 5 . Assume that this reduction is irreducible. We now determine
the character, conductor, and weight of pg g, from the relation between E and Ejg.
The discriminant of K is given by dg, /g = 2*-5* = 2000. The prime factorizations
of (2), (3), and (5) in K are given as follows

(2) = a3
(3) =as
(5) = ds
Let 5 = =2+ 32z + 22 — 23,13 = 3,15 = z be uniformizers for qs, qs, q5 whose

associated valuations are denoted vy(-), v3(+), v5(+).
Let M be a number field. For a prime 7 of M, let V.. be a free M,-module of rank
n with a continuous M, -linear action of Gx. A collection {Vﬂ} of such Vﬂ’s where 7

runs through all primes of M is called a system of M, [Gk|-modules.
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Let A be an abelian variety of dimension g defined over K with endomorphism
algebra equal to a number field M. The p-adic Tate module Vp(A) of A is isomorphic
to M, where M, = M @ Q, =[], Mx and [M : Q]d = 2g. The m-adic Tate module
V.(A) of A is isomorphic to M? and can be obtained as V,(A) = V,(A) ®nr, My, where
M is regarded as a Mpy-module under the projection M, — M.

For each prime 7w of M, there exists an M -basis for ‘A/Tr such that the O,-module
A, generated by this basis is GG g-invariant. This follows from the compactness of G
and the continuity of its action on V.. The k. |G k]-module V. =T, /7T is called a
reduction of Vﬂ. Let p, : Gg — GL(VW) be its associated representation.

Let Ix be the inertia subgroup of Gk, where K is a local field whose residue field

has characteristic £ # p. Suppose that {VW} is a system of M, [Gk]-modules such that

(1) there is an open subgroup of I such that its action on Vj is unipotent
(2) the character of Vj as a M, |G g]-module has values in M which are independent

of 7.

Let G; be the lower index ramification subgroups of I with the normalization Gy = I.

We define the conductor exponent of {VW} as
(11) e(m) = codimy, V& + f: o
T Go: G

codimy,, V&

= [Go: Gil

for any 7 1 £. This quantity is a non-negative integer which is independent of 7 from
arguments found in Ogg [21], Serre-Tate [30].

Suppose that {VW} is a system of M, [G|-modules, where K is a global field. We

define the conductor of {VW} to be the ideal

11
A

where A runs through all finite primes A of K, and e, is the conductor exponent of
{Vﬂ}, regarded as a system of M, |G, ]-modules by restriction to a decomposition

group above \.
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Lemma 28. The conductor exponent of a system of M,|Gk|-modules is additive on

direct sums.

Proof. This is follows from formula (11) defining conductor exponent. O

The conductor of an abelian variety A defined over K is defined as the conductor of

the system of Q,[Gk]|-modules {%(A)}

Lemma 29. Let A be an abelian variety defined over K with endomorphism algebra

equal to a number field M. Let Ng denote the conductor of {V},(A)}, regarded as a

system of Qu[Gk|-modules and let Ny denote the conductor of {Vﬂ(A)}, regarded as
a system of M,[Gk]-modules. Then Ng = Ny M,

Proof. By results in [1, Theorem 4.3], the system of representations considered satisfy
the conditions required for the definition of conductor to be independent of 7. Let us
fix a prime A | £ of K and then compare the conductor exponents e(p) and e(rw) for
V, = V,(A) and V, = V,.(A), considered as Q,[G,] and M,[G,] modules, where 7 | p
and p # {. Since we are free to choose p # £, we can assume without loss of generality
that p is unramified in M. Let f, = [M; : Q)] = [k, : F,] be the inertia degree of 7.

Now, we have that
dim@p W = ]07r lel]\/[7T W
for a sub-M_.-module W of VW. Also,

dimpp W = fﬂ— CllInk7r w

for a sub-k-module W of V.. Since

~ ~

Vo(A) = SrppVa(A),

it follows that e(p) = 3. fre(m). Since the e(m)’s are all equal, we have that e(p) =
[M : Qle(n). O
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Lemma 30. Suppose that E and E' are elliptic curves defined by
E:Y?+a XY +a3Y = X° + asX? + ay X + ag
E'Y?+d XY +ad)Y = X° 4+ abX? + ay X + ay,

where the a;,a; lie in a discrete valuation ring O with uniformizer v, and the Weier-
strass equations are in minimal form. If E has reduction type I} and a; = a; (mod v*),

then E' also has reduction type I.

Proof. Since the Weierstrass equations for £ and E’ are in minimal form, when F and
E’ are processed through Tate’s algorithm [32], the algorithm terminates at one of
Steps 1-10 and does not reach Step 11 to loop back a second time. As F has reduction
type I;, the algorithm applied to E terminates at Step 6. Since the transformations
used in Steps 1-10 are translations, they preserve the congruences a; = a; (mod v?)
as F and E' are processed through the algorithm, and since the conditions to exit at
Steps 1-6 are congruence conditions modulo v* on the coefficients of the Weierstrass
equations, we see that if the algorithm applied to E terminates at Step 6, it must also

terminate at Step 6 for £ O

Lemma 31. Suppose that E and E' are elliptic curves defined by
E:Y?+a XY +a3Y = X° +asX? + as X + ag
B Y?+d XY +aY = X3+ a,X? 4+ d, X + ay,

where the a;, a; lie in a discrete valuation ring O with uniformizer v, and the valuation

at v of the discriminants is equal to 12. If E has reduction type 11* and a a;
(mod 1), then E' also has reduction type IT*. If E has reduction type Iy and a; = a;

(mod v%), then E' also has reduction type Iy.

Proof. As v(A) =12, when E and E’ are processed through Tate’s algorithm [32], the
algorithm terminates at one of Steps 1-10 or reaches Step 11 to loop back a second

time before terminating.
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If E has reduction type I1*, the algorithm applied to E terminates at Step 10. Since
the transformations used in Steps 1-10 are translations, they preserve the congruences
a; = a, (mod %) as E and E’ are processed through the algorithm, and since the
conditions to exit at Steps 1-10 are congruence conditions modulo v on the coefficients
of the Weierstrass equations, we see that if the algorithm applied to E terminates at
Step 10, it must also terminate at Step 10 for E’.

If £ has reduction type Iy, the algorithm applied to E reaches Step 11 to loop back
a second time to terminate at Step 1 (because the valuation of the discriminant of
the model for E is equal to 12). Again, since a, = a; (mod v%), it follows that the
algorithm applied to E’ also reaches Step 11 to loop back a second time to terminate
at Step 1 (again because the valuation of the discriminant of the model for E’ is equal

to 12). O

Theorem 32. The conductor of Ej is
!/
m=q5-q5-95- J[

q|s2—10st+5t2

where the product does not include primes dividing 2 -3 -5; o = 0,4, and € = 0,2

accordingly as s =0 (mod 5), s Z 0 (mod 5).
Proof. Recall that Ej is given by

(12) Y2 = x* - 35 ((3+2v5)s - 3) 12X

+ v ((17 — 4/5)s — (45 — 18\/5)15) ¥,

(13) A, =203 (s = (5+2VB)t)*(s — (5 — 2VB)t) - 7°,
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where
s_[—5+3V5
B 2
n=rK"
1445
2
v = 22(2% + 2% — 22).
Let
(14) ci=—2'-3.-35 ((3 +2V5)s — 3t> 2

o= —2°-3% . o ((17 — 4V/B)s — (45 — 18\/5)15) 7.

Let g be a prime not dividing 2 -3 -5 but dividing Ag,. The elliptic curve Ejg has
multiplicative bad reduction at q if one of ¢4,cs Z 0 (mod q). Since ¢ and ~ are not

divisible by ¢ and (s,t) = 1, we note that ¢; = ¢¢ = 0 (mod q) happens if and only if

(3+2VB)s—3t=0 (mod q)

(17 — 4v/5)s — (45 — 18V/5)t =0 (mod q).

But since the determinant of this linear system is 48(2 — +/5), which is not divisible by
q, we see that ¢4 = ¢ = 0 (mod q) if and only if s =¢ = 0 (mod q), which does not
happen because (s,t) = 1. Hence, E3 has multiplicative bad reduction at g.

If s 0 (mod 3), then vs(cy) = 2. If s =0 (mod 3), then by Equation (13) we have
that v3(Ag,) = 6. Hence, by (22, Tableaux II], Equation (12) is in minimal form at gs.
We go through all possibilities for (v,¢) modulo v4, and in each case we compute the
reduction type of Ejs at q3 using MAGMA [5], which all turn out to be type Ij. By
Lemma 30, this determines all the possible conductor exponents for E3 at gs.

We change the model for elliptic curve Ej by replacing v by p = /2% in Equation
(12). This has the effect of reducing vs(Ag,) because now vs(u) = 1. Note this is only
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done for the purposes of computing the conductor exponent at g5, we do not actually

use this modified model in the overall argument.

(15) Y2 = X% 36 ((3 +2VB)s — 3t> 12X

+ 4o ((17 — 4V/5)s — (45 — 18\/5)t> e,
with
(16) A, =203 7% (s = (5+2VB)t)*(s — (5 — 2VB)t) - puf,

If s 0 (mod 5), then by Equation (16), we have that vs(Ag,) = 6 so Equation (15)
is minimal at q5. We go through all possibilities for (v,¢) modulo v# subject to s # 0
(mod 5), and in each case we compute the reduction type of Ej at g5 using MAGMA
[5], which all turn out to be type Ij. By Lemma 30, this determines all the possible
conductor exponents for Eg at qs5. If s = 0 (mod 5), then vs(s) > 4. It follows from
Equations (14) (16) that vs(cs) > 4, vs(cs) > 6, vs(Ap,) = 12. Replacing (X,Y) by
(Xv2,Y1?) yields a model for Ez which has good reduction at gs.

Since s #Z ¢t (mod 2), then by Equation(13) we see that v2(Ag,) = 12. We go through
all possibilities for (v,#) modulo v$, and in each case we compute the reduction type
of Eg at gy using MAGMA [5], which all turn out to be type I7* or Iy. By Lemma 31,

this determines all the possible conductor exponents for Ejs at qs. O

Theorem 33. The conductor of Eg = Ej is

!/

m=q5-q5-95-  J[

q|s2—10st+5t2

where the product does not include primes dividing 2 -3 -5; o = 0,4, and € = 0,2

accordingly as s 0 (mod 5), s =0 (mod 5).
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Proof. Recall that Ejg is given by
(17) Y2=x3_3.22./5 (33 — (15— 10\/€)t> X

+92°. 5u (9s ~ (45— 14\/3)t) .

with
(18) Ap, =223 5V5 (s (5+ 2VB))%(s - (5 - 2V5)t) o
where

v = 24+ 22— 22,
Let
(19) cr= =23 3225 (35— (15 - 10V5)t)

o= —2°-3%.2° . 5u (93 (45— 14\/5)t) 2

Let g be a prime not dividing 2 - 3 -5 but dividing Ag,. The elliptic curve Ej has
multiplicative bad reduction at q if one of ¢4, s Z 0 (mod q). Since v is not divisible

by q and (s,t) = 1, we note that ¢4 = ¢g =0 (mod q) happens if and only if

35 — (15— 10v5)t =0 (mod q)

9s — (45 — 14V5)t =0 (mod q).

But since the determinant of this linear system is 48v/5, which is not divisible by q, we
see that ¢y = ¢g =0 (mod q) if and only if s =¢ =0 (mod q), which does not happen
because (s,t) = 1. Hence, E3 has multiplicative bad reduction at g.

If t 20 (mod 3), then v3(cy) = 2. If t =0 (mod 3), then by Equation (18) we have
that v3(Ag,) = 6. Hence, by (22, Tableaux II], Equation (17) is in minimal form at gs.
We go through all possibilities for (u,s) modulo v4, and in each case we compute the
reduction type of Ejs at q3 using MAGMA [5], which all turn out to be type I}. By

Lemma 30, this determines all the possible conductor exponents for Es at gs.
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We change the model for elliptic curve Ej by replacing v by p = /2% in Equation
(12). This has the effect of reducing vs(Ap,) because now vs(u) = —1. Note this
is only done for the purposes of computing the conductor exponent at g5, we do not

actually use this modified model in the overall argument.

(20) Y2=x3-3.22./5 (33 — (15— 10\/5)t) 12X
4.5 (95 (45— 14\/5)25) 1.

with

(21) Ap, =22.35.5V5. (s 54+ 2VB)) (s — (5 — 2\/5)t) 8.

If s # 0 (mod 5), then vs(Ag,) = 0 so Ez has good reduction at qs. If s = 0
(mod 5), then by Equation (21), we have that v5(Ag,) = 6 so Equation (20) is minimal
at q5. We go through all possibilities for (u,s) modulo ¥4 subject to s #Z 0 (mod 5),
and in each case we compute the reduction type of Ej at g5 using MAGMA [5], which
all turn out to be type [j. By Lemma 30, this determines all the possible conductor
exponents for Eg at gs.

We change the model for elliptic curve Ejg by replacing v by u = v/v3 in Equation
(12). This has the effect of reducing va(Ag,) because now vy(u) = —2. Note this
is only done for the purposes of computing the conductor exponent at g, we do not
actually use this modified model in the overall argument.

Since s # t (mod 2), then by Equation(18) we see that v2(Ag,) = 12. We go through
all possibilities for (u, s) modulo ©§, and in each case we compute the reduction type
of Eg at gy using MAGMA [5], which all turn out to be type 17* or Iy. By Lemma 31,

this determines all the possible conductor exponents for Es at qs. 0]

Theorem 34. The conductor of Resgﬁ By is

/

dKB/Q2 . NKﬂ/Q(m) — 284—201 . 38 . 56+E . H q47

q|s?2—10st+5¢2



ON THE EQUATION a? +b°? = ¢° 29

where the product does not include primes dividing 2 -3 -5; o = 0,4, and € = 0,2

accordingly as s =0 (mod 5), s Z0 (mod 5).

Proof. cf. [19, Lemma, p. 178]. We also note that Kj is unramified outside {2,5} so
the product is of the form stated. O

Theorem 35. The conductor of Resgﬁ Ej is

!/

dKB/QQ . NKﬁ/Q(‘“) — 28+2a . 38 . 56+6 X H q4’
q|s?—10st+5¢2

where the product does not include primes dividing 2 -3 -5; o = 0,4, and ¢ = 0,2

accordingly as s 0 (mod 5), s =0 (mod 5).

Proof. cf. [19, Lemma, p. 178]. We also note that K3 is unramified outside {2,5} so
the product is of the form stated. O

From here on, we choose E to be E* if s = 0 (mod 5) and E* if s # 0 (mod 5).
Thus, € = 0 from the theorems above.
In our situation, Rp, = Mz ® Mg = Q(i) © Q(i). Let M = Q(i). The conductor of
the system of M,[Gg]-modules {Vﬂ(Resg" Eg)} is one of
24 X 34 X 53 H/ q27

q|s2—10st+5¢t2
98 .34, 53 H’ 7,
q|s2—10st+5t2
using Theorem 34 and 35, Lemmas 28 and 29.

We note that the trivial solution s = 0, = 1 gives rise to the last case and Eq = Ej
has complex multiplication by \/—4 in this situation. The trivial solution s = 1,¢ = 0
gives rise to the first case and F; = Ef; has complex multiplication by /—4 in this
situation.

For future reference, we will use the notation D, and I, for a decomposition and

inertia group of G over the prime g.
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Theorem 36. Let f € So(I'o(N),v) be a newform.
(1) The conductor of {ps~} is equal to N.

(2) Suppose q #p and q || N.
If q does not divide the conductor of 1, then psr |p, is of the form

XXp *
0 x

If q divides the conductor of ¥, then psr |p, is of the form

XXt 0
0 X
Here x is the unramified character of D, which sends Fr, to a, and x, : Gg —

Z., is the p-th cyclotomic character.

Proof. cf. [7, Théoreme 2.1}, [8, Théoreme (A)], [11, Theorem 3.1], [16, (0.1)]. O

The conductor of the system of M, [Gg|-modules {Vﬁ(Ag)} is then equal to the level
of f. Similarly, the conductor of the system of M, [Gg|-modules {VW(A@)} is equal to
the level of f.

We now recall some results about twists of newforms [2]. Let f € Si(I'o(N), )

where 1 is a character of conductor N’ | N. Let x be a character of conductor M.

Then the twist f, of f by x lies in Si(o(N),¥x?) where N = lem(N, N'M, M?).

Theorem 37. Let q be a prime and () be the q-primary factor of the positive integer
N. Write N = QM. Let f be a newform in Si(Io(N), 1)) where the conductor of the
q-primary part 1, of 1 is equal to ¢® with o > 0. Let x be a character of conductor ¢°
with 8> 1. Put Q' = max(Q, ¢®*?,¢*#). Then we have that

(1) £, is of level dividing Q'M,

(2) for each prime ¢’ | M, fy is not of level Q'M /¢,

(3) the ezact level of f, is Q' M provided
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(a) max(¢**”,¢¥) <Q if Q"= Q or
(b) the conductor of 1,x is equal to max(q®,¢°) if Q' > Q.

Proof. cf. [2, Theorem 3.1] O

1 5

Since f’is a twist of f by the character y ™+ = y = (—) of conductor 5, Theorem 37

shows the level of one of f or f’ is equal to one of

2.5 [ a=180 ] «

q|s2—10st+5¢t2 q|s2—10st+5t2
4 a2 / /
2t.32.5 [ q¢=720 [ «

q|s2—10st+5t2 q|s2—10st+5t2

We will for convenience switch the roles of f and f’ if necessary so the level of f is as
stated above.

For the next two theorems, it is useful to note that s — (5+2v/5)t and s — (5 —2v/5)t

are coprime by Lemma 4.
Theorem 38. The representation ¢gy, |1, is finite flat for p # 2,3,5.

Proof. This follows from the fact that E has good or multiplicative bad reduction at
primes above p when p # 2,3,5, and in the case of multiplicative bad reduction, the
exponent of a prime above p in the minimal discriminant of F is divisible by p. Also,

p is unramified in Kz so that I, C G,. O
Theorem 39. The representation ¢g,, |1, is trivial for ¢ # 2,3,5,p.

Proof. This follows from the fact that E has good or multiplicative bad reduction at
primes above ¢ when ¢ # 2,3,5, and in the case of multiplicative bad reduction, the
exponent of a prime above ¢ in the minimal discriminant of F is divisible by p. Also,

¢ is unramified in K3 so that I, C Gg,. O

Theorem 40. Suppose p # 2,3. The conductor of p = ppgr = pr« 15 one of 180,720.
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Proof. Suppose ¢ # 2,3,5,p. Since ¢ # 2,5, we see that Kz is unramified at ¢ and
hence GKﬁ contains I,. Now, in our case, p |GK[, is isomorphic to ¢g . Since ¢g,, |1, is
trivial, we have that p |;, is trivial so p is unramified outside {2, 3, 5, p}.

Suppose ¢ = 2,3,5. The representation ¢EE7P |1, factors through a finite group of
order only divisible by the primes 2,3. Now, in our case, p | Ky is isomorphic to QEEJ,.
Hence, the representation p |7, also factors through a finite group of order only divisible
by the primes 2, 3. It follows that the exponent of ¢ in the conductor of p is the same
as in the conductor of p as p # 2, 3. UJ

Theorem 41. Suppose p # 2,3,5. Then the weight of ppgx = ppr is 2.

Proof. The weight of p is determined by p |;,. Since p # 2,5, we see that Kj is
unramified at p and hence G, contains I,,. Now, in our case, p |GK[, is isomorphic to
$Ep. Since ¢, |7, is finite flat and its determinant is the p-th cyclotomic character,

we have that the weight of p is 2 [29, Proposition 4]. O

Theorem 42. The character of ppgr = pr is € .

Proof. This follows from Equation (1). O

Theorem 43. Suppose the representation pg g is reducible for p # 2,3,5,7,13. Then

E has potentially good reduction at all primes above ¢ > 3.
Proof. cf. [12, Proposition 3.2]. O
Corollary 44. The representation pg g, is irreducible for p # 2,3,5,7,13.

Proof. This follows from the fact that a non-trivial proper solution giving rise to £ will
be such that E has a prime of multiplication bad reduction above a prime not equal

to 2,3,5 by Corollary 8. (]

Theorem 45. Suppose the representation pg s~ has image lying in the normalizer of
a split Cartan subgroup for p # 2,3,5,7,13. Then E has potentially good reduction at

all primes £ > 3.
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Proof. cf. [12, Proposition 3.4]. O

We note in the context of [12, Proposition 3.2] [12, Proposition 3.4], the reference
to a Q-curve of degree d over a quadratic number field K does not require the isogeny
between E and its conjugate to be also defined over K. More precisely, we have the
following fact.

Let X('5(d, p), X§n(d,p), X§y (d,p) be the modular curves with level p structure
corresponding to a Borel subgroup B, the normalizer of a split Cartan subgroup N,
the normalizer of a non-split Cartan subgroup N’ of GLy(F,), and level d structure
consisting of a cyclic subgroup of order d, twisted by the quadratic character associated

to K through the action of the Fricke involution wy.

Lemma 46. Let E be a Q-curve defined over K', K be a quadratic number field

contained in K', and d a prime number such that

(1) the elliptic curve E is defined over K,

(2) the choices of pg(o) are constant on G cosets, ug(c) =1 when o € Gg, and
deg up(o) = d when o € G,

(3) up(o)’ur(o) = £d whenever o ¢ G.

If pg s~ has tmage lying in a Borel subgroup, normalizer of a split Cartan subgroup,
normalizer of a non-split Cartan subgroup of F; GLy(F,), then E gives rise to a Q-

rational point on the corresponding modular curve above.

Proof. This proof is based on [13, Proposition 2.2]. Recall the action of Gg on PE|d] is
given by x — pg(o)(%x). Suppose Ppg 5, has image lying in a Borel subgroup. Then
we have that pg(0)(°C,) = C, for some cyclic subgroup C, of order p in E[p| and all
o € Gg. Let C4 be the cyclic subgroup of order d in E[d] defined by pg(o)(’E[d))
where o is an element of Gg which is non-trivial on K. This does not depend on the

choice of . Suppose o is an element of Gy which is non-trivial on K. The kernel of

(o) is precisely “Cy as ps(0)("Ca) = () (o) (Eld)) = [=d] (7 Eld]) = 0.
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Hence, we see that
wy’(E,Cq, Cp) = we(°E, °Cy, °C,,)

= (ue(0)("E), pe(0)(Eld]), ne(0)(°Cy))

- (Ea Cd7 CP)

so Y(E,Cy,Cp) = wa(E, Cy, C,) as wy is an involution. Suppose o is an element of Gg
which is trivial on K. In this case, we have that ’(E,Cy4,C,) = (E,Cq4,C,). Thus,
(E,Cy,C,) gives rise to a Q-rational point on Xy 5(d, p).

The case when the image of pg . lies in the normalizer of a Cartan subgroup is
similar except now we have the existence of a set of distinct points S, = {«,, 5,} of

PE[p] ® F,2 such that the action of 0 € Gg by © — pg(c)(’z) fixes S, as a set. O

Hence, we may apply Ellenberg’s result to £/Q(v/5) as initially given because the
hypotheses are satisfied (with K’ = Q(v/5,v/2), K = Q(v/5), d = 2), noting also that
his Ppy , : Gg — PGLy(IF,) is simply the projectivation of our pg g, and this does not
depend on the choice of 3.

Corollary 47. The representation pg g, does not have image lying in the normalizer

of a split Cartan subgroup for p # 2,3,5,7,13.

Proof. This follows from the fact that a non-trivial proper solution giving rise to £ will
be such that F has a prime of multiplication bad reduction above a prime not equal

to 2,3,5 by Corollary 8. O

It follows from work on the refined Serre’s conjectures that ps . = p, » for a newform
g € So(To(M), e 1) where M = 180,720. We have that °f = f@e and 7f = f' Q¢
where o is the non-trivial automomorphism of M = Q(¢) by [25, Example 3.7]. We
have that G, = (Z/20Z)" /{£1} = {£1,43,4£7,4£9} and £7 and £3 are each
generators of this cyclic group of order 4. Recall we have normalized €(+3) = i. From

the inner twist property of f and f’ above (c.f. [25, §3]), we see that €(q) = +i implies
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that a,(f) = u + v satisfies w = v = 0. Thus, if ¢ = £3 (mod 20), then we have that
u+v=0and if ¢ = £7 (mod 20), then we have that u —v = 0.

Suppose that K|, is strictly larger than Q(¢). Let ¢ # 2,3,5 be a prime such that
aq,(g) & Q(7). Assume that p # ¢. Then we have that

p| N (aq(g)2 — e’l(q) (¢ + 1)2) if ¢ | s% — 10st + 5t2

p | N (a,(g) —a,(f)) if ¢ 1 s* — 10st + 5>,

The former case follows from Theorem 36. In the latter case, we also note that a,(f) is
restricted by the properties of inner twist above and also by the fact that |aq(f)] < 2/
Hence, for each such prime ¢, we obtain that p is restricted to belong in a finite subset
of primes. Taking the intersection of these subsets for different ¢ further restricts the
possibilities for the prime p.

A computation of S5(I'g(180), ') reveals 2 newforms g such that K|, strictly contains
Q(i). For these, we obtain a bound of p € {2,3,5,7,17}. There are 3 newforms g such
that K, = Q(i) and these all have complex multiplication by Q(y/—4).

A computation of S5(T'o(720), ') reveals 4 newforms g such that K, strictly contains
Q(i). For these, we obtain a bound of p € {2,3,5,7}. There are 3 newforms g such
that K, = Q(i) and these all have complex multiplication by Q(y/—4).

The computations of modular forms were performed in MAGMA [5] using W. Stein’s

modular symbols package. The data is posted at
www.math.sfu.ca/"ichen/x225-data

for the reader’s reference.

Theorem 48. Let p > 17 be a prime such that p = 1 (mod 4). Then the equation

a? 4+ b?? = ¢® does not have any non-trivial proper solutions.

Proof. If p ¢ {2,3,5,7,13}U{2,3,5,7,17}, then we must have that p;, = p,r, where g
has complex multiplication by Q(v/—4). If p =1 (mod 4), then p; . = p, » would have

image lying in the normalizer of a split Cartan subgroup, contradicting Corollary 47.
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For the latter fact about the image, we give some details. We are given that g has
complex multiplication by F = Q(v/—4) in the sense that a,(g9)¢(q) = a,(g) for all
but finitely many primes g, where ¢ is the quadratic Dirichlet character associated to
F. By [31], A, is isogenous over Q to the power of an elliptic curve C' with complex
multiplication by F', which we shall take to be Ey or E; defined previously. Hence,
Ay is an abelian variety of GLo-type defined over QQ attached to C. We have shown
that A, is isogenous over Q to Ag for some splitting map (3 for co(o, 7). However,
we know that detp,. = € 'y, so the splitting character e = e. It follows that (3
is the (§ defined in Equation (8), up to multiplication by a quadratic Galois character
unramified outside {2, 3,5}. Thus, K is unramified outside {2,3,5}. We may now take
the field of definition of the isogeny between A, and C? to be K by the construction
of Ag. Let L = Kz - F. There is an injection of M = F' - K, into the endomorphism
algebra of A, defined over L and V,(A4,) = M ® Q, as G-modules. Since p = 1
(mod 4), p is split in M and so p, - |¢, has image lying in a split Cartan subgroup of
GLy(kr) = GLy(F,). This implies that in fact p, » |¢, has image lying in a split Cartan
subgroup of GLy(F,). For we know that py - |, is abelian [24, Proposition (4.4)] so if
it does not lie in a split Cartan subgroup of GLy(F,), it must lie in a non-split Cartan
subgroup of GLy(F,). Therefore p, » |, lies in the center of GLy(IF,), implying further
that det py» |¢, lies in the subgroup of squares of FS. However, det py . la,= E_lyp
is surjective to F’ since L does not contain a primitive p-th root of unity for p > 5.
Finally, as [Gg : Gp] = 2 it follows that p, , itself has image lying in the normalizer of
a split Cartan subgroup of GLy(IF,) by the classification of subgroups of GLy(F,). O

6. CONCLUSION

It would be interesting to see if a few more cases of the generalized Fermat equa-
tion can be handled using Q-curves. Indeed, it would be worthwhile to have a more
conceptual and precise understanding as to which exponents we can expect to resolve

using elliptic curves and what properties these elliptic curves should have (thanks to
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C. Skinner for asking this question and pointing out the references below). In the case
of prime exponents, this was analyzed in [14], and in [10] one has a conceptual starting

point to answer this question.
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