
ON THE EQUATION a2 + b2p = c5

IMIN CHEN

Abstract. Using the method of Galois representations and modular forms, we show

that the generalized Fermat equation a2 + b2p = c5 does not have any non-trivial

proper solutions if p > 17 is a prime such that p ≡ 1 (mod 4). In order to apply

the method, we use Q-curves defined over quartic extensions of Q and consider the

abelian varieties of GL2-type attached to them.

A solution (a, b, c) ∈ Z3 to the equation a2+b2p = c5 is said to be non-trivial if ab 6= 0

and proper if (a, b, c) = 1. This equation is a special case of the generalized Fermat

equation xp + yq = zr which has been the focus of much interest since the resolution of

Fermat’s Last Theorem (cf. [18] and its references for a survey of recent work in this

area).

In this paper, we show the following result.

Theorem 1. Let p > 17 be a prime such that p ≡ 1 (mod 4). Then the equation

a2 + b2p = c5 does not have any non-trivial proper solutions.

The method uses Galois representations and modular forms. A new feature which

arises for this equation is the use of Q-curves defined over quartic extensions of Q

and the abelian varieties of GL2-type attached to them. To handle the Q-curves in

the method, we use the results developed in [12], where the use of Q-curves was first

introduced. However, to deal with Q-curves defined over quartic extensions of Q, it is

necessary to use some results from the theory of Q-curves [15] [26] [23] [13] and make

them sufficiently explicit.
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Finally, we note the overall strategy still cannot handle certain primes p due to our

inability to apply Mazur’s method to analyze the rational points on certain modular

curves with non-split Cartan level structure (cf. Remark 3.7 in [12]).

1. Setting up the problem

We begin by recalling the parametrization of proper solutions to the equation x2 +

y2 = z5.

Lemma 2. A triple (x, y, z) ∈ Z3 with (x, y, z) = 1 satisfies x2 + y2 = z5 only if

(x, y, z) = (u(u4 − 10u2v2 + 5v4), v(v4 − 10v2u2 + 5u4), u2 + v2) for some (u, v) ∈ Z2

with (u, v) = 1.

Proof. This follows from factoring over the Gaussian integers. �

Lemma 3. Let p be an odd prime. Suppose (a, b, c) ∈ Z3 satisfies a2 + b2p = c5 with

(a, b, c) = 1 and ab 6= 0. Then there exists (s, t) ∈ Z2 with (s, t) = 1, st 6= 0, and such

that the following properties hold:

• s2 − 10st+ 5t2 = 5jγp where 5 - γ

• v = βp and j = 0 or v = 5kp−1βp and j = 1, where 5 - β and k ≥ 1

• s = v2, t = u2.

Proof. As (u, v) = 1, we have that (v, v4 − 10v2u2 + 5u4) | 5. Setting y to be a p-th

power in Lemma 2, we obtain a solution to

v4 − 10v2u2 + 5u4 = 5jγp

where (u, v) = 1, uv 6= 0, 5 - γ and j ≥ 0. Setting s = v2, t = u2 we have that

s2 − 10st+ 5t2 = 5jγp.

Since in fact (v2, v4 − 10v2u2 + 5u4) | 5, we either have 5 - s and j = 0 or 5 | s and

j = 1. Thus, we either have v = βp and j = 0 or v = 5kp−1βp and j = 1, where 5 - β

and k ≥ 1. �
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For the equation a2p + b2p = c5, one can set both x and y to be a p-th power and

consider the resulting diophantine equations. Bennett [3] has shown these equations

can be resolved using the results in [4].

It is perhaps instructive to discuss in more detail how the argument proceeds. If we

use the constraint that y is a p-th power, we can complete the square in the following

way to obtain a solution to an equation of the form Aa′n +Bb′n = Cc′2,

v4 − 10v2u2 + 5u4 = 5(u2 − v2)2 − 4v4

=

5(u2 − v2)2 − 4β4p = γp if j = 0

5(u2 − v2)2 − 4 · 54kp−4β4p = 5γp if j = 1.

In [4], this class of generalized Fermat equations was extensively studied from the

point of view of the modular method. The Frey curve attached to a solution (a′, b′, c′)

is isomorphic over Q to Y 2 = X3 + 2c′CX2 + BCb′nX and tries to solve the initial

constraints that v, s2 − 10st+ 5t2 are p-powers up to S-units for a finite set of primes

S.

Unfortunately, in the case of j = 0, the solution corresponding to (u, v) = (0, 1)

persists for all p and the Frey curve [4] corresponding to this solution does not have

complex multiplication. This is a situation for which one is not currently able to apply

the modular method to a obtain a full result in every congruence class. In the case

of j = 1, that is, when 5 | y, there is an obstructing newform in S2(Γ0(40)) which

prevents a resolution in the situation when a′b′ is odd.

Some partial results are possible however. For instance, one can give a computational

criterion for resolving specific primes p when 5 | y, using the technique of [17] (cf. also

[9]). Also, one has a resolution for p ≥ 7 and y even using the results in [4]. Because

of the symmetry between a and b in the equation a2p + b2p = z5, we may assume y is

even, hence Bennett’s result [3].
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Lemma 4. Let p be an odd prime. If s2−10st+5t2 = 5jγp where j ∈ {0, 1}, 5 - γ, and

s, t ∈ Z are coprime squares, then s 6≡ t (mod 2) and s2− 10st+ 5t2 is not divisible by

2.

Proof. If s ≡ t (mod 2), then s ≡ t (mod 8) and s, t 6≡ 0 (mod 2) as s, t are coprime

squares. Then we would have that 5jγp = s2 − 10st + 5t2 ≡ −4s2 (mod 8). This is a

contradiction if p is an odd prime. �

Lemma 5. Let p be an odd prime. If s2 − 10st + 5t2 = 5jγp where j ∈ {0, 1}, 5 - γ,

and s, t ∈ Z are coprime squares, then s2 − 10st+ 5t2 is not divisible by 3.

Proof. We note that s2−10st+5t2 ≡ s2−st−t2 (mod 3) is irreducible when considered

as an element of F3[s, t]. �

For the next two lemmas, we note that v4− 10v2t+ 5t2 = 5(t− v2)2− 4v4 so integer

solutions to v4 − 10v2t+ 5t2 = c give rise to integer solutions to 5Y 2 − 4X4 = c.

Lemma 6. If (v, t) ∈ Z2 satisfies v4 − 10v2t+ 5t2 = ±1, then v = ±1 and t = 0.

Proof. We use the Elliptic Curves package in MAGMA [5] to determine the integer

points on the quartic equation 5Y 2 = 4X4 ± 1. �

Lemma 7. If (v, t) ∈ Z2 satisfies v4 − 10v2t+ 5t2 = ±5, then v = 0 and t = ±1.

Proof. We use the Elliptic Curves package in MAGMA [5] to determine the integer

points on the quartic equation 5Y 2 = 4X4 ± 5. �

Corollary 8. Let p be an odd prime. Suppose (a, b, c) ∈ Z3 satisfies a2 + b2p = c5 with

(a, b, c) = 1 and ab 6= 0. Let s, t be as in Lemma 3. Then s2− 10st+ 5t2 is divisible by

a prime not equal to 2, 3, 5.

Proof. By Lemmas 3, 4, and 5, we see that if s2 − 10st + 5t2 is only divisible by the

primes 2, 3, 5, then s2 − 10st + 5t2 = ±1,±5. The result then follows from Lemmas 6

and 7. �
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2. Q-curves and abelian varieties of GL2-type

Let K be a number field and let C be an elliptic curve defined over K such that

there is an isogeny µC(σ) : σC → C defined over K for each σ ∈ GQ. Such an elliptic

curve C is called a Q-curve defined over K. This notion was originally defined and

studied for a CM-elliptic curve [15] [6], but was extended by Ribet [26] to the non-CM

case using different methods. Further explicit considerations were developed in [23]

which we will use in the sequel. The exposition below of the theory follows closely the

citations above as well as [13].

From here on, we choose the isogenies so that µC(σ) factors through GK/Q and µC(σ)

is the identity on GK . Furthermore, when we speak of a Q-curve, we will assume that

it does not have complex multiplication.

Let cC(σ, τ) = µC(σ)σµC(τ)µC(στ)−1 ∈ (HomK(C,C) ⊗Z Q)∗ = Q∗, where µ−1
C :=

(1/ deg µC)µ′C and µ′C is the dual of µC . Then cC(σ, τ) determines a class in H2(GQ,Q∗)

which depends only on the Q-isogeny class of C. The class cC(σ, τ) factors through

H2(GK/Q,Q∗) and this class depends only on the K-isogeny class of C. Moreover,

cC(σ, τ) in fact lies in H2(GQ,Q∗)[2].

Tate (cf. [28, Theorem 4]) showed that H2(GQ,Q
∗
) is trivial where the action of GQ

on Q∗
is trivial. Thus, there is a continuous map β : GQ → Q∗

such that

cC(σ, τ) = β(σ)β(τ)β(στ)−1

as cocycles in H2(GQ,Q
∗
). In such a case, we say that β is a splitting map for C (or

more precisely, for cC(σ, τ)).

Let A be an abelian variety defined over Q. The endomorphism algebra EndQA of

A is defined as the ring of endomorphisms of A defined over Q tensored over Z with

Q. Let RC be the Q-algebra generated over Q by λσ for σ ∈ GK/Q with multiplication

given by λστcC(σ, τ) = λσλτ , where we recall that cC(σ, τ) = µC(σ)σµC(τ)µC(στ)−1

depends the function µC . Consider the restriction of scalars ResK
Q C, for which we

recall its defining functorial property that Hom(S,ResK
Q C) ↔ Hom(S ⊗K,C). There
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is a natural isomorphism

RC → EndQ ResK
Q C

which sends λσ to the endomorphism of ResK
Q C defined by

P 7→ τµC(σ)(P )

on στC.

Given a splitting map β for C, we now enlarge K if necessary so that β factors

through GK/Q. The map given by λσ 7→ β(σ) gives a surjective homomorphism RC →

Mβ = Q(β(σ)). As RC is a semi-simple Q-algebra, there is a projection from RC

onto the isomorphic copy of Mβ in RC . Let Aβ be the image of this projection in the

category of abelian varieties defined over Q up to isogeny over Q.

We note the following twist on the construction of Aβ above which is useful in practice

to minimize the degree of the extension K required (recall K needs to be large enough

so both cC(σ, τ) and β(σ) factor through GK/Q). Suppose that as 2-cocycles we have

that

cC(σ, τ)ε(σ, τ) = β(σ)β(τ)β(στ)−1

where ε(σ, τ) is the 2-coboundary obtained from a 1-cocycle
σ√γ
√

γ
where γ ∈ Q∗

. By

the way twisting affects the cocycles cC(σ, τ) [23, p. 291] we see that the twist Cγ of C

is such that

cCγ (σ, τ) = cC(σ, τ)ε(σ, τ) = β(σ)β(τ)β(στ)−1.

Thus, replacing C by Cγ allows us to only require that K be large enough so that β(σ)

factors through GK/Q.

Recall an abelian variety defined over Q of GL2-type is one whose endomorphism

algebra is isomorphic to a number field M of degree equal to the dimension of the

abelian variety. An abelian variety defined over Q of GL2-type attached to a Q-curve

C is one which has C as a quotient over Q.
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Theorem 9. The abelian variety Aβ is an abelian variety defined over Q of GL2-type

attached to C, with endomorphism algebra isomorphic to Mβ.

Proof. cf. [26, Theorem 6.1]. �

Proposition 10. If A is an abelian variety defined over Q of GL2-type attached to a

Q-curve C, then A is isogenous over Q to some Aβ where β is a splitting map for C.

Proof. If C is a quotient of A defined over K, then there is a non-zero homomorphism

A → ResK
Q C defined over Q. Since A is simple up to isogeny over Q, it follows that

A is a quotient defined over Q of ResK
Q C. As RC is a semi-simple Q-algebra, there is

a projection RC → EndQA given by λσ → β(σ) say. We now see that β is a splitting

map for C, and that Aβ is isogenous over Q to A. �

Proposition 11. Suppose that RC is a product of fields. Then ResK
Q C is isogenous

over Q to a product of pairwise non-isogenous abelian varieties defined over Q of GL2-

type, each of the form Aβ where β is a splitting map for C. Furthermore, Aβ1 is

isogenous over Q to Aβ2 if and only if β2 = σβ1 for some σ ∈ GQ.

Proof. cf. [23, Proposition 5.1, Lemma 5.3]. �

For an abelian variety A defined over Q, let V̂p(C) denote the Qp[GQ]-module which

is the p-adic Tate module of C tensored over Qp.

Proposition 12. V̂p(ResK
Q C) ∼= RC ⊗ V̂p(C) as RC ⊗Qp[GQ]-modules.

Proof. The proof is a modification of [26, Corollary 6.6]. Recall that it is given that

C is a Q-curve defined over K and let A = ResK
Q C. There is an isomorphism A ∼=

BK =
∏

σ∈GK/Q
σC defined over K by the defining property of restriction of scalars.

Let TK =
∏

σ∈GK/Q
Cσ where Cσ = C for all σ ∈ GK/Q. There is an action of RC

on TK with λg taking the factor Cσ to the factor Cgσ via multiplication by cC(g, σ).

Let ι : TK → BK be the map which takes the factor Cσ to the factor σ−1

C via the

map σ−1

µC(σ). Then ι is a RC [GK ]-equivariant isomorphism. By the defined action
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of RC on TK , we have that V̂p(TK) ∼= RC ⊗ V̂p(C) as RC ⊗ Qp[GK ]-modules. Hence,

V̂p(A) ∼= V̂p(BK) ∼= RC ⊗ V̂p(C) as RC ⊗ Qp[GK ]-modules. The action of GQ on A

can be transferred to an action of GQ on TK via the isomorphisms A ∼= BK
∼= TK .

From this, it can be shown that the explicit action of GQ on the RC ⊗ Qp-module

V̂p(A) ∼= RC ⊗ V̂p(C) is given by

x⊗ y 7→ x · λσ−1 ⊗
( τ
µC(τ−1)

)−1
(τ(y)).

�

From Proposition 12, it follows that V̂p(Aβ) ∼= Mβ⊗ V̂p(C) as Mβ⊗Qp[GQ]-modules.

Picking a prime π of Mβ above p, we get a representation ρ̂C,β,π : GQ → GL2(Mβ,π).

The explicit action of GQ on the Mβ ⊗Qp module V̂p(Aβ) is then given by

x⊗ y 7→ x · β(σ−1)⊗
( τ
µC(τ−1)

)−1
(τ(y)),

which can be simplified to the expression

x⊗ y 7→ x · β(σ)−1 ⊗ µC(τ)(τ(y)).

Hence, if we regard Mβ,π as a subfield of Qp, then ρ̂C,β,π is a representation to Q∗
p ·

GL2(Qp), and it satisfies Pρ̂C,β,π |GK
∼= Pφ̂C,p, where φ̂C,p : GK → GL2(Qp) is the

representation of GK on V̂p(C).

Let εβ : GQ → Q∗
be defined by

εβ(σ) = β(σ)2/ deg µC(σ).

Then εβ is a character and

(1) det ρ̂C,β,π = ε−1
β · χp,

where χp : GQ → Z∗
p is the p-th cyclotomic character.

Given two splitting maps β, β′ for C, there is a character χ : GQ → Q∗
such that

β′ = χβ. Conversely, if β is a splitting map, then β′ = χβ is a splitting map for any
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character χ : GQ → Q∗
. When Mβ′ = Mβ, we see that ρC,β′,π = χ⊗ ρC,β,π are twists of

each other, as are Aβ′ and Aβ.

We say that a Q-curve C is modular if for some positive integer N it is the quotient

over Q of J1(N). If a Q-curve C is modular, then there is a newform f ∈ S2(Γ0(N), ε−1)

such that Af is an abelian variety defined over Q of GL2 type attached to C. This

follows because J1(N) decomposes into product of Af ’s up to isogeny over Q [25]. By

Proposition 10, Af is isogenous to Aβ for some splitting map β, and hence for some

splitting map β for C we have that ρC,β,π
∼= ρf,π for some newform f ∈ S2(Γ0(N), ε−1).

Since any two splitting maps differ by a character, we see that for every splitting map

β we have that ρC,β,π
∼= ρf,π for some f ∈ S2(Γ0(N), ε−1). Conversely, if ρC,β,π

∼= ρf,π

for some newform f ∈ S2(Γ0(N), ε−1), then Aβ is isogenous over Q to Af and hence

the Q-curve C is modular.

In summary, we have shown that ρC,β,π
∼= ρf,π for some f ∈ S2(Γ0(N), ε−1) if and

only if the Q-curve C is modular.

3. Q-curves arising from the equation a2 + b2p = c5

Let p be an odd prime. Suppose (a, b, c) ∈ Z3 satisfies a2 + b2p = c5 with (a, b, c) = 1

and ab 6= 0. Recall that Lemma 3 tells us that there exists (s, t) ∈ Z2 with (s, t) = 1,

st 6= 0, and such that

• s2 − 10st+ 5t2 = 5jγp where 5 - γ

• v = βp and j = 0 or v = 5kp−1βp and j = 1, where 5 - β and k ≥ 1

• s = v2, t = u2.

Consider the elliptic curve Es defined over Q(
√

5) given by

(2) Es : Y 2 = X3 − 3δ
(
(3 + 2

√
5)s− 3t

)
X + 4v

(
(17− 4

√
5)s− (45− 18

√
5)t
)

where δ =
(
−5+3

√
5

2

)
, η = κ−3, and κ = −1+

√
5

2
. Then

(3) ∆Es = 26 · 36 · η−3 ·
(
s− (5 + 2

√
5)t
)2 (

s− (5− 2
√

5)t
)
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and

(4) jEs =
26 · 5

√
5 · η ·

(
(3 + 2

√
5)s− 3t

)3(
s− (5 + 2

√
5)t
)2 (

s− (5− 2
√

5)t
) .

The Q-curve Es tries to solve the initial constraints that s is a square and s2−10st+5t2

is a p-power up to S-units for a finite set of primes S.

Consider in addition the elliptic curve Et defined over Q(
√

5) given by

(5) Et : Y 2 = X3 − 3 · 22 ·
√

5
(
3s− (15− 10

√
5)t
)
X + 25 · 5u

(
9s− (45− 14

√
5)t
)
.

Then

(6) ∆Et = 212 · 36 · 5
√

5 ·
(
s− (5 + 2

√
5)t
)2 (

s− (5− 2
√

5)t
)

and

(7) jEt =
64(3s− (15− 10

√
5)t)3

(s− (5 + 2
√

5)t)
2
(s− (5− 2

√
5)t)

.

The Q-curve Et tries to solve the initial constraints that t is a square and s2−10st+5t2

is a p-power up to S-units for a finite set of primes S.

The superscript in Es and Et are intended to label the two different Frey curves

attached to a solution.

Proposition 13. Assume s/t ∈ Q. The j-invariant of Es does not lie in Q unless

• s/t = 0, j = 1728

• s/t = 1, j = 8000

Proof. The j-invariant of Es lies in Q(
√

5), so is of the form α + β
√

5. Setting β = 0

gives a system of equations which can be solved in MAPLE. �

Proposition 14. Assume s/t ∈ Q. The j-invariant of Et does not lie in Q unless

• s/t = ∞, j = 1728

• s/t = 5, j = 8000.
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Proof. The j-invariant of Et lies in Q(
√

5), so is of the form α + β
√

5. Setting β = 0

gives a system of equations which can be solved in MAPLE. �

The elliptic curves with complex multiplication by an imaginary quadratic order O

of class number 2 are listed below (c.f. [20], [33]).

d(O) j

−15 (−191025± 85995
√

5)/2

−20 632000± 282880
√

5

−24 2417472± 1707264
√

2

−35 −58982400± 26378240
√

5

−40 212846400± 95178240
√

5

−51 −2770550784± 671956992
√

17

−52 3448440000± 956448000
√

13

−88 3147421320000± 2225561184000
√

2

−91 −5179536506880± 1436544958464
√

13

−115 −213932305612800± 95673435586560
√

5

−123 −677073420288000± 105741103104000
√

41

−148 19830091900536000± 3260047059360000
√

37

−187 −2272668190894080000± 551203000178688000
√

17

−232 302364978924945672000± 56147767009798464000
√

29

−235 −411588709724712960000± 184068066743177379840
√

5

−267 −9841545927039744000000± 1043201781864732672000
√

89

−403 −1226405694614665695989760000± 340143739727246741938176000
√

13

−427 −7805727756261891959906304000± 999421027517377348595712000
√

61
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Proposition 15. Assume s/t ∈ Q. The elliptic curve Es does not have complex

multiplication unless

• s/t = 0, j = 1728, d(O) = −4

• s/t = 1, j = 8000, d(O) = −8

• s/t = 1/2, j = 632000− 282880
√

5, d(O) = −20

• s/t = 9, j = 212846400 + 95178240
√

5, d(O) = −40

• s/t = 9/17, j = 212846400− 95178240
√

5, d(O) = −40

• s/t = ∞, j = 632000 + 282880
√

5, d(O) = −20

Proof. Since the j-invariant of Es lies in Q(
√

5), we note that if E has complex multi-

plication, then the ring of its endormorphisms defined over Q is an imaginary quadratic

order O of discriminant d(O) = −15, −20, −35, −40, −115, −235 or j(Es) ∈ Q. For

each of the corresponding values of the j-invariant, we can use MAPLE to compute

the possible values for s/t ∈ Q. �

Proposition 16. Assume s/t ∈ Q. The elliptic curve Et does not have complex

multiplication unless

• s/t = 5, j = 8000, d(O) = −8

• s/t = 10, j = 632000 + 282880
√

5, d(O) = −20

• s/t = 0, j = 632000− 282880
√

5, d(O) = −20

• s/t = 85/9, j = 212846400 + 95178240
√

5, d(O) = −40

• s/t = 5/9, j = 212846400− 95178240
√

5, d(O) = −40

• s/t = ∞, j = 1728

Proof. Since the j-invariant of Et lies in Q(
√

5), we note that if E has complex multi-

plication, then the ring of its endormorphisms defined over Q is an imaginary quadratic

order O of discriminant d(O) = −15, −20, −35, −40, −115, −235 or j(Et) ∈ Q. For

each of the corresponding values of the j-invariant, we can use MAPLE to compute

the possible values for s/t ∈ Q. �
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Corollary 17. If s, t satisfy the conditions from Lemma 3, then Es does not have

complex multiplication unless

• s/t = 0, j = 1728, d(O) = −4

• s/t = ∞, j = 632000 + 282880
√

5, d(O) = −20

Proof. We eliminate the cases s/t = 9, j = 212846400 + 95178240
√

5, d(O) = −40 and

s/t = 1, j = 8000, d(O) = −8 because p is an odd prime (cf. Lemma 4). The other

cases are eliminated because s/t is a square. �

Corollary 18. If s, t satisfy the conditions from Lemma 3, then Et does not have

complex multiplication unless

• s/t = 0, j = 632000 + 282880
√

5, d(O) = −20

• s/t = ∞, j = 1728, d(O) = −4

Proof. The other cases are eliminated because s/t is a square. �

Assume that s, t satisfy the conditions from Lemma 3. The elliptic curves Es, Et

are Q-curves defined over Q(
√

5,
√

2) as long as s/t 6= 0,∞ by Corollary 17 and 18.

We note that E = Es, Et is not a Q-curve defined over Q(
√

5) because the 2-isogeny

between E and its conjugate under
√

5 7→ −
√

5 cannot in general be defined over

Q(
√

5).

4. Splitting maps and models of Q-curves

Let E = Es or Et. We have constructed representations ρ̂E,β,π : GQ → GL2(Mβ,π)

attached to the Q-curve E. However, the construction depends on a choice of splitting

map β : GQ → Q∗
for E, which is related to picking a Q-curve E ′ defined over K ′ in the

Q-isomorphism class of E such that the decomposition of ResK′

Q E ′ up to isogeny over

Q is a product of non-isogenous abelian varieties of GL2-type (see previous discussion

in Section 2).

Let GQ(
√

5) = {σ1, σ5}. There is a 2-isogeny σ5E → E defined over Q(
√

5,
√

2),

whence we set µE(σ5) to be this isogeny and µE(σ1) = 1. The cocycle cE(σ, τ) =
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µE(σ)σµE(τ)µE(στ)−1 can also be described as arising from a cocycle αE ∈ H1(GQ,Q
∗
/Q∗)

given by µE(σ)∗(ωE) = αE(σ)ωE′ , with ωE, ωE′ being the invariant differentials on E,

E ′ = σE, through the formula

cE(σ, τ) = αE(σ)σαE(τ)αE(στ)−1,

which results from the map

H1(GQ,Q
∗
/Q∗) → H2(GQ,Q∗),

which is derived from the short exact sequence

1 → Q∗ → Q∗ → Q∗
/Q∗ → 1.

Explicitly,

αEs(σ1) = 1

αEs(σ5) =
1 +

√
5√

2

αEt(σ1) = 1

αEt(σ5) =
√

2.

This can be computed using the discussion in [23, p. 288].

Consider first E = Es. Let GQ(
√

5,
√

2) = {σ1, σ2, σ5, σ10}. Then cE(σ, τ) factors

through this group and has the representative values

cE(σ2, σ2) = 1

cE(σ10, σ10) = 2

cE(σ2, σ10) = −cE(σ10, σ2).

It follows that RE
∼= M2(Q) and hence Res

Q(
√

5,
√

2)
Q E is isogenous over Q to B × B

where B is an abelian surface defined over Q with EndQB = Q. This means that

taking K ′ = Q(
√

5,
√

2) and E ′ = E is not a suitable choice for our purposes because
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the decomposition of Res
Q(
√

5,
√

2)
Q E up to isogeny over Q does not include any abelian

varieties of GL2-type.

Proposition 19. The map on cocycles given by

c(σ, τ) 7→ (sgn c(σ, τ), |c(σ, τ)|)

induces an isomorphism

H2(GQ,Q∗)[2] → H2(GQ, {±1})×H2(GQ, P/P
2)

where P is the group of positive rational numbers.

Proof. cf. [23, p. 294]. �

We call c±(σ, τ) = sgn c(σ, τ) the sign component of c(σ, τ).

Proposition 20. The sign component c±E(σ, τ) ∈ H2(GQ, {±1}) of cE(σ, τ) is given by

the quaternion algebra (5, 2) ∈ H2(GQ, {±1}).

Proof. Let d(σ) = deg µE(σ) be the degree map. In the terminology of [23, p. 294],

we have that {a1} = {5} and {d1} = {2} are dual bases with respect to d(σ). The

conclusion then follows from [23, Theorem 3.1]. �

Let ε : GQ → Q∗
be a character and let θε(σ, τ) =

√
ε(σ)

√
ε(τ)

√
ε(στ)

−1
. Then

θε(σ, τ) ∈ H2(GQ, {±1}).

Proposition 21. Let β(σ) =
√
ε(σ)

√
d(σ). Then β(σ) is a splitting map for E if and

only θε(σ, τ) = c±E(σ, τ) as classes in H2(GQ, {±1}).

Proof. cf. [23, Theorem 4.2]. �

Proposition 22. We have that θε(σ, τ) = c±E(σ, τ) as classes in H2(GQ, {±1}) if and

only if θε(σ, τ) = c±E(σ, τ) as classes in H2(GQp , {±1}) for all finite primes p.

Proof. cf. [23, p. 302]. �



16 IMIN CHEN

Proposition 23. H2(GQp , {±1}) ∼= {±1} for all finite primes p.

Proof. This follows from the fact that H2(GQp , {±1}) is contained in the 2-torsion of

H2(GQp ,Q
∗
p) which can be identified with isomorphism classes of simple algebras over

Qp with center Qp and dimension 4 over Qp, namely, quaternion algebras over Qp (c.f.

[27, Chapitre X, §5, Chapitre XIII, §4]). It is also known that over Qp, there are

precisely two isomorphism classes of quaternion algebras (c.f. [34, Theorem 1.1]). �

Proposition 24. We have that θε(σ, τ)p = εp(−1) as classes in H2(GQp , {±1}) ∼=

{±1}.

Proof. cf. [23, p. 302]. �

The above results imply that a possible choice of splitting map β for E is given by

(8) β(σ) =
√
ε(σ)

√
d(σ),

where d(σ) = deg µE(σ), ε = ε4ε5, and ε4 is the non-trivial character of (Z/4Z)∗, and

ε5 is a non-trivial character of (Z/5Z)∗. For this choice of β, we have that εβ = ε and

Mβ = Q(i). The character ε has kernel {±1}, regarded as a character of (Z/20Z)×. To

fix choices, let us suppose that ε(±3) = i ∈ C.

Explicitly, the coboundary relating the cocycles cE(σ, τ) and cβ(σ, τ) = β(σ)β(τ)β(στ)−1

can be described as follows. We will use this coboundary to find a Q-curve Eβ defined

over a number field Kβ in the Q-isomorphism class of E such that cEβ
(σ, τ) = cβ(σ, τ)

as cocycles (not just as classes).

Let α1(σ) = αE(σ)
σ√γ1√

γ1
, where γ1 = 5+

√
5

2
. Then we have that

α1(σ1) = 1

α1(σ5) =
√

2.

Recall that the cocycles α(σ), α1(σ) have values in Q∗
/Q∗ so any equality is regarded

up to multiplication by an element in Q∗.
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We wish to find a γ2 such that

(9) α2(σ) = α1(σ)
σ√γ2√
γ2

satisfies

cβ(σ, τ) = α2(σ)σα2(τ)α2(στ)
−1.

Let Kβ = Q(z) where z =
√

5+
√

5
2

is a root of X4−5X2 +5 and let GKβ/Q =
{
σ±1 , σ

±
5

}
.

The unit group of Kβ is generated by

u1 = −1

u2 = 2− z2

u3 = −z2 + z + 2

u4 = −z3 + z2 + 3z − 3

and is isomorphic to Z/2Z× Z× Z× Z.

Let g = α2(σ
+
5 ). Then g2

2
=

σ+
5 γ2

γ2
is a necessary constraint on g using Equation (9).

As an initial guess, let us suppose that g2

2
= u is a unit in Kβ. This unit u = 2 − z

can be obtained by noting (2) = (g2) in Kβ. Since NKβ/Q(u) = 1, by Hilbert 90, there

is a γ2 ∈ Kβ such that
σγ2

γ2
= u, where σ = σ+

5 . This γ2 can be obtained from the

expression

γ′2 = z + uzσ + u1+σzσ2

+ u1+σ+σ2

zσ3

used in the proof of Hilbert 90. Then up to scaling by an element in Q∗, we may take

γ2 = 1
γ′2

= z3 + z2 − 2z.

Finally, if we let α2(σ) = αE(σ)
σ√γ
√

γ
where

γ = z2(z3 + z2 − 2z)

= 3z3 + 5z2 − 5z − 5

= z3/u3,
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then the cocycle inH2(GQ,Q∗) arising from α2(σ) is precisely cβ(σ, τ) = β(σ)β(τ)β(στ)−1.

For this fact, we list for convenience the following values

σ+
5 γ

γ
=
g2

2
,

σ−5 γ

γ
=
g2

2

1

u2
4

,

σ+
1 γ

γ
= 1,

σ−1 γ

γ
= u2

3,

which show that α2(σ) has values in Kβ.

Let Eβ be the Q-curve defined over Kβ in the Q-isomorphism class of E given by

Y 2 = X3 − 3δ
(
(3 + 2

√
5)s− 3t

)
γ2X(10)

+ 4v
(
(17− 4

√
5)s− (45− 18

√
5)t
)
γ3

where δ =
(
−5+3

√
5

2

)
, η = κ−3, and κ = −1+

√
5

2
= −1/u2.

Let αEβ
(σ) be the cocycle in H1(GQ,Q

∗
/Q∗) given by µEβ

(σ)∗(ωEβ
) = αEβ

(σ)ωE′
β

where E ′
β = σEβ. From consideration of how twisting affects the αE(σ) [23, p. 291],

we have that

αEβ
(σ) = αE(σ)

σ√γ
√
γ

= α2(σ).

The values α2(σ) lie in Kβ. Hence, if we use Eβ instead of E, then Eβ is a Q-curve

defined over Kβ and we have that

cEβ
(σ, τ) = cβ(σ, τ) = β(σ)β(τ)β(στ)−1

as cocycles.

Now work of Quer [23, Theorem 5.4, Case (2)] implies that

Res
Kβ

Q Eβ ∼Q Aβ × Aβ′ ,
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where Aβ, Aβ′ are abelian varieties defined over Q of GL2-type with endomorphism

algebra Q(i). Here, β′ = χ · β is a splitting map such that εβ′ = ε and χ =
(
5
·

)
is the

quadratic character attached to Q(
√

5).

A similar calculation can be made for E = Et with exactly the same β as above but

γ = z3 + z2 − 2z. For this, it is convenient to simply note that αEt(σ) = α1(σ).

Proposition 25. The elliptic curve E = Es (resp. E = Et) has the following proper-

ties.

• E has potentially good ordinary reduction in characteristic 3 if s 6≡ 0 (mod 3)

(resp. t 6≡ 0 (mod 3)) and potentially good supersingular reduction in charac-

teristic 3 if s ≡ 0 (mod 3) (resp. t ≡ 0 (mod 3)).

• The sign component c±E(σ, τ) = sgnµE(σ)σµE(τ)µE(στ)−1 ∈ H2(GQ, {±1}) is

trivial when restricted to GQ3.

Proof. The elliptic curve E has potentially good reduction because the denominator

of its j-invariant is not divisible by a prime above 3 by Equation (4) and (7) and

Lemma 5. Its j-invariant is zero in characteristic 3 if and only if s ≡ 0 (mod 3) (resp.

t ≡ 0 (mod 3)) so E is supersingular in characteristic 3 if and only if s ≡ 0 (mod 3)

(resp. t ≡ 0 (mod 3)). Since the sign component c±E(σ, τ) is given by the quaternion

algebra (5, 2) by Proposition 20, we see that it is trivial when restricted to GQ3 . �

Theorem 26. The abelian varieties Aβ and Aβ′ are modular.

Proof. In the case of potentially good ordinary reduction, E satisfies the hypotheses of

[13, Theorem 5.1] because of Proposition 25 so we deduce that it is modular. In the

case of potentially good supersingular reduction, we note that PρE,β,π is unramified at

3 so by [13, Theorem 5.2] we also deduce that E is modular. �

The abelian varieties Aβ and Aβ′ are not isogenous over Q since β′ 6= σβ for any

σ ∈ GQ. Let f and f ′ be the newforms attached to Aβ and Aβ′ respectively.



20 IMIN CHEN

Theorem 27. Aβ′ is isogenous over Q to a twist of Aβ by χ−1 = χ =
(
5
·

)
and hence

f ′ is a twist of f by χ−1 = χ =
(
5
·

)
.

Proof. This can be seen from the Galois action on the Tate module of Aβ and Aβ′

which is given by

x⊗ y 7→ x · β(σ)−1 ⊗ µE(τ)(τ(y))

x⊗ y 7→ x · β′(σ)−1 ⊗ µE(τ)(τ(y)).

Since β′ = χ · β, we see that

ρ̂A,β′,π(σ) = ε−1(σ)ρ̂A,β,π(σ),

where π is a prime of Mβ′ = Mβ = Q(i) above p. �

5. Serre invariants attached to Q-curves

For E = Es or Et, let

ρE,β,π : GQ → F∗p GL2(Fp)

be the reduction of ρ̂E,β,π. Assume that this reduction is irreducible. We now determine

the character, conductor, and weight of ρE,β,π from the relation between E and Eβ.

The discriminant of Kβ is given by dKβ/Q = 24 · 53 = 2000. The prime factorizations

of (2), (3), and (5) in Kβ are given as follows

(2) = q2
2

(3) = q3

(5) = q4
5.

Let ν2 = −2 + 3z + z2 − z3, ν3 = 3, ν5 = z be uniformizers for q2, q3, q5 whose

associated valuations are denoted v2(·), v3(·), v5(·).

Let M be a number field. For a prime π of M , let V̂π be a free Mπ-module of rank

n with a continuous Mπ-linear action of GK . A collection
{
V̂π

}
of such V̂π’s where π

runs through all primes of M is called a system of Mπ[GK ]-modules.
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Let A be an abelian variety of dimension g defined over K with endomorphism

algebra equal to a number field M . The p-adic Tate module V̂p(A) of A is isomorphic

to Md
p , where Mp = M ⊗Qp =

∏
π|pMπ and [M : Q]d = 2g. The π-adic Tate module

V̂π(A) of A is isomorphic to Md
π and can be obtained as V̂π(A) = V̂p(A)⊗Mp Mπ, where

Mπ is regarded as a Mp-module under the projection Mp →Mπ.

For each prime π of M , there exists an Mπ-basis for V̂π such that the Oπ-module

Λπ generated by this basis is GK-invariant. This follows from the compactness of GK

and the continuity of its action on V̂π. The kπ[GK ]-module V̂π = Tπ/πTπ is called a

reduction of V̂π. Let ρπ : GK → GL(V̂π) be its associated representation.

Let IK be the inertia subgroup of GK , where K is a local field whose residue field

has characteristic ` 6= p. Suppose that
{
V̂π

}
is a system of Mπ[GK ]-modules such that

(1) there is an open subgroup of IK such that its action on V̂π is unipotent

(2) the character of V̂π as a Mπ[GK ]-module has values in M which are independent

of π.

Let Gi be the lower index ramification subgroups of I with the normalization G0 = I.

We define the conductor exponent of
{
V̂π

}
as

(11) e(π) = codimMπ V̂
IK
π +

∞∑
i=1

1

[G0 : Gi]
codimkπ V

Gi
π

for any π - `. This quantity is a non-negative integer which is independent of π from

arguments found in Ogg [21], Serre-Tate [30].

Suppose that
{
V̂π

}
is a system of Mπ[GK ]-modules, where K is a global field. We

define the conductor of
{
V̂π

}
to be the ideal∏

λ

λeλ ,

where λ runs through all finite primes λ of K, and eλ is the conductor exponent of{
V̂π

}
, regarded as a system of Mπ[GKλ

]-modules by restriction to a decomposition

group above λ.
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Lemma 28. The conductor exponent of a system of Mπ[GK ]-modules is additive on

direct sums.

Proof. This is follows from formula (11) defining conductor exponent. �

The conductor of an abelian variety A defined over K is defined as the conductor of

the system of Qp[GK ]-modules
{
V̂p(A)

}
.

Lemma 29. Let A be an abelian variety defined over K with endomorphism algebra

equal to a number field M . Let NQ denote the conductor of
{
V̂p(A)

}
, regarded as a

system of Qp[GK ]-modules and let NM denote the conductor of
{
V̂π(A)

}
, regarded as

a system of Mπ[GK ]-modules. Then NQ = NM
[M :Q].

Proof. By results in [1, Theorem 4.3], the system of representations considered satisfy

the conditions required for the definition of conductor to be independent of π. Let us

fix a prime λ | ` of K and then compare the conductor exponents e(p) and e(π) for

V̂p = V̂p(A) and V̂π = V̂π(A), considered as Qp[GKλ
] and Mπ[GKλ

] modules, where π | p

and p 6= `. Since we are free to choose p 6= `, we can assume without loss of generality

that p is unramified in M . Let fπ = [Mπ : Qp] = [kπ : Fp] be the inertia degree of π.

Now, we have that

dimQp Ŵ = fπ dimMπ Ŵ

for a sub-Mπ-module Ŵ of V̂π. Also,

dimFp W = fπ dimkπ W

for a sub-kπ-module W of Vπ. Since

V̂p(A) = ⊕π|pV̂π(A),

it follows that e(p) =
∑

π|p fπe(π). Since the e(π)’s are all equal, we have that e(p) =

[M : Q]e(π). �
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Lemma 30. Suppose that E and E ′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

E ′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6,

where the ai, a
′
i lie in a discrete valuation ring O with uniformizer ν, and the Weier-

strass equations are in minimal form. If E has reduction type I∗0 and a′i ≡ ai (mod ν4),

then E ′ also has reduction type I∗0 .

Proof. Since the Weierstrass equations for E and E ′ are in minimal form, when E and

E ′ are processed through Tate’s algorithm [32], the algorithm terminates at one of

Steps 1–10 and does not reach Step 11 to loop back a second time. As E has reduction

type I∗0 , the algorithm applied to E terminates at Step 6. Since the transformations

used in Steps 1–10 are translations, they preserve the congruences ai ≡ a′i (mod ν4)

as E and E ′ are processed through the algorithm, and since the conditions to exit at

Steps 1–6 are congruence conditions modulo ν4 on the coefficients of the Weierstrass

equations, we see that if the algorithm applied to E terminates at Step 6, it must also

terminate at Step 6 for E ′. �

Lemma 31. Suppose that E and E ′ are elliptic curves defined by

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

E ′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6,

where the ai, a
′
i lie in a discrete valuation ring O with uniformizer ν, and the valuation

at ν of the discriminants is equal to 12. If E has reduction type II∗ and a′i ≡ ai

(mod ν6), then E ′ also has reduction type II∗. If E has reduction type I0 and a′i ≡ ai

(mod ν6), then E ′ also has reduction type I0.

Proof. As v(∆) = 12, when E and E ′ are processed through Tate’s algorithm [32], the

algorithm terminates at one of Steps 1–10 or reaches Step 11 to loop back a second

time before terminating.
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If E has reduction type II∗, the algorithm applied to E terminates at Step 10. Since

the transformations used in Steps 1–10 are translations, they preserve the congruences

ai ≡ a′i (mod ν6) as E and E ′ are processed through the algorithm, and since the

conditions to exit at Steps 1–10 are congruence conditions modulo ν6 on the coefficients

of the Weierstrass equations, we see that if the algorithm applied to E terminates at

Step 10, it must also terminate at Step 10 for E ′.

If E has reduction type I0, the algorithm applied to E reaches Step 11 to loop back

a second time to terminate at Step 1 (because the valuation of the discriminant of

the model for E is equal to 12). Again, since a′i ≡ ai (mod ν6), it follows that the

algorithm applied to E ′ also reaches Step 11 to loop back a second time to terminate

at Step 1 (again because the valuation of the discriminant of the model for E ′ is equal

to 12). �

Theorem 32. The conductor of Es
β is

m = qα
2 · q2

3 · qε
5 ·

′∏
q|s2−10st+5t2

q,

where the product does not include primes dividing 2 · 3 · 5; α = 0, 4, and ε = 0, 2

accordingly as s ≡ 0 (mod 5), s 6≡ 0 (mod 5).

Proof. Recall that Eβ is given by

Y 2 = X3 − 3δ
(
(3 + 2

√
5)s− 3t

)
γ2X(12)

+ 4v
(
(17− 4

√
5)s− (45− 18

√
5)t
)
γ3,

with

(13) ∆Eβ
= 26 · 36 · η−3 · (s− (5 + 2

√
5)t)2(s− (5− 2

√
5)t) · γ6,



ON THE EQUATION a2 + b2p = c5 25

where

δ =

(
−5 + 3

√
5

2

)
η = κ−3

κ =
−1 +

√
5

2

γ = z2(z3 + z2 − 2z).

Let

c4 = −24 · 3 · −3δ
(
(3 + 2

√
5)s− 3t

)
γ2(14)

c6 = −25 · 33 · 4v
(
(17− 4

√
5)s− (45− 18

√
5)t
)
γ3.

Let q be a prime not dividing 2 · 3 · 5 but dividing ∆Eβ
. The elliptic curve Eβ has

multiplicative bad reduction at q if one of c4, c6 6≡ 0 (mod q). Since δ and γ are not

divisible by q and (s, t) = 1, we note that c4 ≡ c6 ≡ 0 (mod q) happens if and only if

(3 + 2
√

5)s− 3t ≡ 0 (mod q)

(17− 4
√

5)s− (45− 18
√

5)t ≡ 0 (mod q).

But since the determinant of this linear system is 48(2−
√

5), which is not divisible by

q, we see that c4 ≡ c6 ≡ 0 (mod q) if and only if s ≡ t ≡ 0 (mod q), which does not

happen because (s, t) = 1. Hence, Eβ has multiplicative bad reduction at q.

If s 6≡ 0 (mod 3), then v3(c4) = 2. If s ≡ 0 (mod 3), then by Equation (13) we have

that v3(∆Eβ
) = 6. Hence, by [22, Tableaux II], Equation (12) is in minimal form at q3.

We go through all possibilities for (v, t) modulo ν4
3 , and in each case we compute the

reduction type of Eβ at q3 using MAGMA [5], which all turn out to be type I∗0 . By

Lemma 30, this determines all the possible conductor exponents for Eβ at q3.

We change the model for elliptic curve Eβ by replacing γ by µ = γ/z2 in Equation

(12). This has the effect of reducing v5(∆Eβ
) because now v5(µ) = 1. Note this is only
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done for the purposes of computing the conductor exponent at q5, we do not actually

use this modified model in the overall argument.

Y 2 = X3 − 3δ
(
(3 + 2

√
5)s− 3t

)
µ2X(15)

+ 4v
(
(17− 4

√
5)s− (45− 18

√
5)t
)
µ3.

with

(16) ∆Eβ
= 26 · 36 · η−3 · (s− (5 + 2

√
5)t)2(s− (5− 2

√
5)t) · µ6,

If s 6≡ 0 (mod 5), then by Equation (16), we have that v5(∆Eβ
) = 6 so Equation (15)

is minimal at q5. We go through all possibilities for (v, t) modulo ν4
5 subject to s 6≡ 0

(mod 5), and in each case we compute the reduction type of Eβ at q5 using MAGMA

[5], which all turn out to be type I∗0 . By Lemma 30, this determines all the possible

conductor exponents for Eβ at q5. If s ≡ 0 (mod 5), then v5(s) ≥ 4. It follows from

Equations (14) (16) that v5(c4) ≥ 4, v5(c6) ≥ 6, v5(∆Eβ
) = 12. Replacing (X, Y ) by

(Xν2
5 , Y ν

3
5) yields a model for Eβ which has good reduction at q5.

Since s 6≡ t (mod 2), then by Equation(13) we see that v2(∆Eβ
) = 12. We go through

all possibilities for (v, t) modulo ν6
2 , and in each case we compute the reduction type

of Eβ at q2 using MAGMA [5], which all turn out to be type II∗ or I0. By Lemma 31,

this determines all the possible conductor exponents for Eβ at q2. �

Theorem 33. The conductor of Eβ = Et
β is

m = qα
2 · q2

3 · qε
5 ·

′∏
q|s2−10st+5t2

q,

where the product does not include primes dividing 2 · 3 · 5; α = 0, 4, and ε = 0, 2

accordingly as s 6≡ 0 (mod 5), s ≡ 0 (mod 5).
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Proof. Recall that Eβ is given by

Y 2 = X3 − 3 · 22 ·
√

5
(
3s− (15− 10

√
5)t
)
γ2X(17)

+ 25 · 5u
(
9s− (45− 14

√
5)t
)
γ3.

with

(18) ∆Eβ
= 212 · 36 · 5

√
5 ·
(
s− (5 + 2

√
5)t)2(s− (5− 2

√
5)t
)
γ6

where

γ = z3 + z2 − 2z.

Let

c4 = −24 · 3 · −3 · 22 ·
√

5
(
3s− (15− 10

√
5)t
)
γ2(19)

c6 = −25 · 33 · 25 · 5u
(
9s− (45− 14

√
5)t
)
γ3.

Let q be a prime not dividing 2 · 3 · 5 but dividing ∆Eβ
. The elliptic curve Eβ has

multiplicative bad reduction at q if one of c4, c6 6≡ 0 (mod q). Since γ is not divisible

by q and (s, t) = 1, we note that c4 ≡ c6 ≡ 0 (mod q) happens if and only if

3s− (15− 10
√

5)t ≡ 0 (mod q)

9s− (45− 14
√

5)t ≡ 0 (mod q).

But since the determinant of this linear system is 48
√

5, which is not divisible by q, we

see that c4 ≡ c6 ≡ 0 (mod q) if and only if s ≡ t ≡ 0 (mod q), which does not happen

because (s, t) = 1. Hence, Eβ has multiplicative bad reduction at q.

If t 6≡ 0 (mod 3), then v3(c4) = 2. If t ≡ 0 (mod 3), then by Equation (18) we have

that v3(∆Eβ
) = 6. Hence, by [22, Tableaux II], Equation (17) is in minimal form at q3.

We go through all possibilities for (u, s) modulo ν4
3 , and in each case we compute the

reduction type of Eβ at q3 using MAGMA [5], which all turn out to be type I∗0 . By

Lemma 30, this determines all the possible conductor exponents for Eβ at q3.
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We change the model for elliptic curve Eβ by replacing γ by µ = γ/z2 in Equation

(12). This has the effect of reducing v5(∆Eβ
) because now v5(µ) = −1. Note this

is only done for the purposes of computing the conductor exponent at q5, we do not

actually use this modified model in the overall argument.

Y 2 = X3 − 3 · 22 ·
√

5
(
3s− (15− 10

√
5)t
)
µ2X(20)

+ 25 · 5u
(
9s− (45− 14

√
5)t
)
µ3.

with

(21) ∆Eβ
= 212 · 36 · 5

√
5 ·
(
s− (5 + 2

√
5)t)2(s− (5− 2

√
5)t
)
µ6.

If s 6≡ 0 (mod 5), then v5(∆Eβ
) = 0 so Eβ has good reduction at q5. If s ≡ 0

(mod 5), then by Equation (21), we have that v5(∆Eβ
) = 6 so Equation (20) is minimal

at q5. We go through all possibilities for (u, s) modulo ν4
5 subject to s 6≡ 0 (mod 5),

and in each case we compute the reduction type of Eβ at q5 using MAGMA [5], which

all turn out to be type I∗0 . By Lemma 30, this determines all the possible conductor

exponents for Eβ at q5.

We change the model for elliptic curve Eβ by replacing γ by µ = γ/ν2
2 in Equation

(12). This has the effect of reducing v2(∆Eβ
) because now v2(µ) = −2. Note this

is only done for the purposes of computing the conductor exponent at q2, we do not

actually use this modified model in the overall argument.

Since s 6≡ t (mod 2), then by Equation(18) we see that v2(∆Eβ
) = 12. We go through

all possibilities for (u, s) modulo ν6
2 , and in each case we compute the reduction type

of Eβ at q2 using MAGMA [5], which all turn out to be type II∗ or I0. By Lemma 31,

this determines all the possible conductor exponents for Eβ at q2. �

Theorem 34. The conductor of Res
Kβ

Q Es
β is

dKβ/Q
2 ·NKβ/Q(m) = 28+2α · 38 · 56+ε ·

′∏
q|s2−10st+5t2

q4,
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where the product does not include primes dividing 2 · 3 · 5; α = 0, 4, and ε = 0, 2

accordingly as s ≡ 0 (mod 5), s 6≡ 0 (mod 5).

Proof. cf. [19, Lemma, p. 178]. We also note that Kβ is unramified outside {2, 5} so

the product is of the form stated. �

Theorem 35. The conductor of Res
Kβ

Q Et
β is

dKβ/Q
2 ·NKβ/Q(m) = 28+2α · 38 · 56+ε ·

′∏
q|s2−10st+5t2

q4,

where the product does not include primes dividing 2 · 3 · 5; α = 0, 4, and ε = 0, 2

accordingly as s 6≡ 0 (mod 5), s ≡ 0 (mod 5).

Proof. cf. [19, Lemma, p. 178]. We also note that Kβ is unramified outside {2, 5} so

the product is of the form stated. �

From here on, we choose E to be Es if s ≡ 0 (mod 5) and Et if s 6≡ 0 (mod 5).

Thus, ε = 0 from the theorems above.

In our situation, REβ
∼= Mβ ⊕Mβ′

∼= Q(i)⊕Q(i). Let M = Q(i). The conductor of

the system of Mπ[GQ]-modules
{
V̂π(Res

Kβ

Q Eβ)
}

is one of

24 · 34 · 53
∏′

q|s2−10st+5t2

q2,

28 · 34 · 53
∏′

q|s2−10st+5t2

q2,

using Theorem 34 and 35, Lemmas 28 and 29.

We note that the trivial solution s = 0, t = 1 gives rise to the last case and E0 = Es
β

has complex multiplication by
√
−4 in this situation. The trivial solution s = 1, t = 0

gives rise to the first case and E1 = Et
β has complex multiplication by

√
−4 in this

situation.

For future reference, we will use the notation Dq and Iq for a decomposition and

inertia group of GQ over the prime q.
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Theorem 36. Let f ∈ S2(Γ0(N), ψ) be a newform.

(1) The conductor of {ρ̂f,π} is equal to N .

(2) Suppose q 6= p and q || N .

If q does not divide the conductor of ψ, then ρ̂f,π |Dq is of the formχχp ∗

0 χ

 .

If q divides the conductor of ψ, then ρ̂f,π |Dq is of the formχ−1χpψ 0

0 χ

 .

Here χ is the unramified character of D` which sends Frq to aq and χp : GQ →

Z∗
p is the p-th cyclotomic character.

Proof. cf. [7, Théorème 2.1], [8, Théorème (A)], [11, Theorem 3.1], [16, (0.1)]. �

The conductor of the system of Mπ[GQ]-modules
{
V̂π(Aβ)

}
is then equal to the level

of f . Similarly, the conductor of the system of Mπ[GQ]-modules
{
V̂π(Aβ′)

}
is equal to

the level of f ′.

We now recall some results about twists of newforms [2]. Let f ∈ Sk(Γ0(N), ψ)

where ψ is a character of conductor N ′ | N . Let χ be a character of conductor M .

Then the twist fχ of f by χ lies in Sk(Γ0(Ñ), ψχ2) where Ñ = lcm(N,N ′M,M2).

Theorem 37. Let q be a prime and Q be the q-primary factor of the positive integer

N . Write N = QM . Let f be a newform in Sk(Γ0(N), ψ) where the conductor of the

q-primary part ψq of ψ is equal to qα with α ≥ 0. Let χ be a character of conductor qβ

with β ≥ 1. Put Q′ = max(Q, qα+β, q2β). Then we have that

(1) fχ is of level dividing Q′M ,

(2) for each prime q′ |M , fχ is not of level Q′M/q′,

(3) the exact level of fχ is Q′M provided
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(a) max(qα+β, q2β) < Q if Q′ = Q or

(b) the conductor of ψqχ is equal to max(qα, qβ) if Q′ > Q.

Proof. cf. [2, Theorem 3.1] �

Since f ′ is a twist of f by the character χ−1 = χ =
(
5
·

)
of conductor 5, Theorem 37

shows the level of one of f or f ′ is equal to one of

22 · 32 · 5
∏′

q|s2−10st+5t2

q = 180
∏′

q|s2−10st+5t2

q,

24 · 32 · 5
∏′

q|s2−10st+5t2

q = 720
∏′

q|s2−10st+5t2

q.

We will for convenience switch the roles of f and f ′ if necessary so the level of f is as

stated above.

For the next two theorems, it is useful to note that s− (5+2
√

5)t and s− (5−2
√

5)t

are coprime by Lemma 4.

Theorem 38. The representation φE,p |Ip is finite flat for p 6= 2, 3, 5.

Proof. This follows from the fact that E has good or multiplicative bad reduction at

primes above p when p 6= 2, 3, 5, and in the case of multiplicative bad reduction, the

exponent of a prime above p in the minimal discriminant of E is divisible by p. Also,

p is unramified in Kβ so that Ip ⊆ GKβ
. �

Theorem 39. The representation φE,p |I`
is trivial for ` 6= 2, 3, 5, p.

Proof. This follows from the fact that E has good or multiplicative bad reduction at

primes above ` when ` 6= 2, 3, 5, and in the case of multiplicative bad reduction, the

exponent of a prime above ` in the minimal discriminant of E is divisible by p. Also,

` is unramified in Kβ so that I` ⊆ GKβ
. �

Theorem 40. Suppose p 6= 2, 3. The conductor of ρ = ρE,β,π
∼= ρf,π is one of 180, 720.
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Proof. Suppose ` 6= 2, 3, 5, p. Since ` 6= 2, 5, we see that Kβ is unramified at ` and

hence GKβ
contains I`. Now, in our case, ρ |GKβ

is isomorphic to φE,p. Since φE,p |I`
is

trivial, we have that ρ |I`
is trivial so ρ is unramified outside {2, 3, 5, p}.

Suppose ` = 2, 3, 5. The representation φ̂E,p |I`
factors through a finite group of

order only divisible by the primes 2, 3. Now, in our case, ρ̂ |GKβ
is isomorphic to φ̂E,p.

Hence, the representation ρ̂ |I`
also factors through a finite group of order only divisible

by the primes 2, 3. It follows that the exponent of ` in the conductor of ρ is the same

as in the conductor of ρ̂ as p 6= 2, 3. �

Theorem 41. Suppose p 6= 2, 3, 5. Then the weight of ρE,β,π
∼= ρf,π is 2.

Proof. The weight of ρ is determined by ρ |Ip . Since p 6= 2, 5, we see that Kβ is

unramified at p and hence GKβ
contains Ip. Now, in our case, ρ |GKβ

is isomorphic to

φE,p. Since φE,p |Ip is finite flat and its determinant is the p-th cyclotomic character,

we have that the weight of ρ is 2 [29, Proposition 4]. �

Theorem 42. The character of ρE,β,π
∼= ρf,π is ε−1.

Proof. This follows from Equation (1). �

Theorem 43. Suppose the representation ρE,β,π is reducible for p 6= 2, 3, 5, 7, 13. Then

E has potentially good reduction at all primes above ` > 3.

Proof. cf. [12, Proposition 3.2]. �

Corollary 44. The representation ρE,β,π is irreducible for p 6= 2, 3, 5, 7, 13.

Proof. This follows from the fact that a non-trivial proper solution giving rise to E will

be such that E has a prime of multiplication bad reduction above a prime not equal

to 2, 3, 5 by Corollary 8. �

Theorem 45. Suppose the representation ρE,β,π has image lying in the normalizer of

a split Cartan subgroup for p 6= 2, 3, 5, 7, 13. Then E has potentially good reduction at

all primes ` > 3.
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Proof. cf. [12, Proposition 3.4]. �

We note in the context of [12, Proposition 3.2] [12, Proposition 3.4], the reference

to a Q-curve of degree d over a quadratic number field K does not require the isogeny

between E and its conjugate to be also defined over K. More precisely, we have the

following fact.

Let XK
0,B(d, p), XK

0,N(d, p), XK
0,N ′(d, p) be the modular curves with level p structure

corresponding to a Borel subgroup B, the normalizer of a split Cartan subgroup N ,

the normalizer of a non-split Cartan subgroup N ′ of GL2(Fp), and level d structure

consisting of a cyclic subgroup of order d, twisted by the quadratic character associated

to K through the action of the Fricke involution wd.

Lemma 46. Let E be a Q-curve defined over K ′, K be a quadratic number field

contained in K ′, and d a prime number such that

(1) the elliptic curve E is defined over K,

(2) the choices of µE(σ) are constant on GK cosets, µE(σ) = 1 when σ ∈ GK, and

deg µE(σ) = d when σ 6∈ GK,

(3) µE(σ)σµE(σ) = ±d whenever σ /∈ GK.

If ρE,β,π has image lying in a Borel subgroup, normalizer of a split Cartan subgroup,

normalizer of a non-split Cartan subgroup of F×p GL2(Fp), then E gives rise to a Q-

rational point on the corresponding modular curve above.

Proof. This proof is based on [13, Proposition 2.2]. Recall the action of GQ on PE[d] is

given by x 7→ µE(σ)(σx). Suppose PρE,β,p has image lying in a Borel subgroup. Then

we have that µE(σ)(σCp) = Cp for some cyclic subgroup Cp of order p in E[p] and all

σ ∈ GQ. Let Cd be the cyclic subgroup of order d in E[d] defined by µE(σ)(σE[d])

where σ is an element of GQ which is non-trivial on K. This does not depend on the

choice of σ. Suppose σ is an element of GQ which is non-trivial on K. The kernel of

µE(σ) is precisely σCd as µE(σ)(σCd) = µE(σ)σµE(σ)
(

σ2

E[d]
)

= [±d]
(

σ2

E[d]
)

= 0.



34 IMIN CHEN

Hence, we see that

wd
σ(E,Cd, Cp) = wd(

σE, σCd,
σCp)

= (µE(σ)(σE), µE(σ)(σE[d]), µE(σ)(σCp))

= (E,Cd, Cp)

so σ(E,Cd, Cp) = wd(E,Cd, Cp) as wd is an involution. Suppose σ is an element of GQ

which is trivial on K. In this case, we have that σ(E,Cd, Cp) = (E,Cd, Cp). Thus,

(E,Cd, Cp) gives rise to a Q-rational point on X0,B(d, p).

The case when the image of ρE,β,π lies in the normalizer of a Cartan subgroup is

similar except now we have the existence of a set of distinct points Sp = {αp, βp} of

PE[p]⊗ Fp2 such that the action of σ ∈ GQ by x 7→ µE(σ)(σx) fixes Sp as a set. �

Hence, we may apply Ellenberg’s result to E/Q(
√

5) as initially given because the

hypotheses are satisfied (with K ′ = Q(
√

5,
√

2), K = Q(
√

5), d = 2), noting also that

his PρE,p : GQ → PGL2(Fp) is simply the projectivation of our ρE,β,π and this does not

depend on the choice of β.

Corollary 47. The representation ρE,β,π does not have image lying in the normalizer

of a split Cartan subgroup for p 6= 2, 3, 5, 7, 13.

Proof. This follows from the fact that a non-trivial proper solution giving rise to E will

be such that E has a prime of multiplication bad reduction above a prime not equal

to 2, 3, 5 by Corollary 8. �

It follows from work on the refined Serre’s conjectures that ρf,π
∼= ρg,π for a newform

g ∈ S2(Γ0(M), ε−1) where M = 180, 720. We have that σf = f ⊗ ε and σf ′ = f ′ ⊗ ε

where σ is the non-trivial automomorphism of M = Q(i) by [25, Example 3.7]. We

have that GKβ/Q ∼= (Z/20Z)∗ / {±1} = {±1,±3,±7,±9} and ±7 and ±3 are each

generators of this cyclic group of order 4. Recall we have normalized ε(±3) = i. From

the inner twist property of f and f ′ above (c.f. [25, §3]), we see that ε(q) = ±i implies
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that aq(f) = u + iv satisfies u± v = 0. Thus, if q ≡ ±3 (mod 20), then we have that

u+ v = 0 and if q ≡ ±7 (mod 20), then we have that u− v = 0.

Suppose that Kg is strictly larger than Q(i). Let q 6= 2, 3, 5 be a prime such that

aq(g) 6∈ Q(i). Assume that p 6= q. Then we have that

p | N
(
aq(g)

2 − ε−1(q) (q + 1)2) if q | s2 − 10st+ 5t2

p | N (aq(g)− aq(f)) if q - s2 − 10st+ 5t2.

The former case follows from Theorem 36. In the latter case, we also note that aq(f) is

restricted by the properties of inner twist above and also by the fact that |aq(f)| < 2
√
q.

Hence, for each such prime q, we obtain that p is restricted to belong in a finite subset

of primes. Taking the intersection of these subsets for different q further restricts the

possibilities for the prime p.

A computation of S2(Γ0(180), ε−1) reveals 2 newforms g such thatKg strictly contains

Q(i). For these, we obtain a bound of p ∈ {2, 3, 5, 7, 17}. There are 3 newforms g such

that Kg = Q(i) and these all have complex multiplication by Q(
√
−4).

A computation of S2(Γ0(720), ε−1) reveals 4 newforms g such thatKg strictly contains

Q(i). For these, we obtain a bound of p ∈ {2, 3, 5, 7}. There are 3 newforms g such

that Kg = Q(i) and these all have complex multiplication by Q(
√
−4).

The computations of modular forms were performed in MAGMA [5] using W. Stein’s

modular symbols package. The data is posted at

www.math.sfu.ca/~ichen/x225-data

for the reader’s reference.

Theorem 48. Let p > 17 be a prime such that p ≡ 1 (mod 4). Then the equation

a2 + b2p = c5 does not have any non-trivial proper solutions.

Proof. If p /∈ {2, 3, 5, 7, 13}∪{2, 3, 5, 7, 17}, then we must have that ρf,π
∼= ρg,π, where g

has complex multiplication by Q(
√
−4). If p ≡ 1 (mod 4), then ρf,π

∼= ρg,π would have

image lying in the normalizer of a split Cartan subgroup, contradicting Corollary 47.
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For the latter fact about the image, we give some details. We are given that g has

complex multiplication by F = Q(
√
−4) in the sense that aq(g)φ(q) = aq(g) for all

but finitely many primes q, where φ is the quadratic Dirichlet character associated to

F . By [31], Ag is isogenous over Q to the power of an elliptic curve C with complex

multiplication by F , which we shall take to be E0 or E1 defined previously. Hence,

Ag is an abelian variety of GL2-type defined over Q attached to C. We have shown

that Ag is isogenous over Q to Aβ for some splitting map β for cC(σ, τ). However,

we know that det ρ̂g,π = ε−1χp so the splitting character εβ = ε. It follows that β

is the β defined in Equation (8), up to multiplication by a quadratic Galois character

unramified outside {2, 3, 5}. Thus, Kβ is unramified outside {2, 3, 5}. We may now take

the field of definition of the isogeny between Ag and C2 to be Kβ by the construction

of Aβ. Let L = Kβ · F . There is an injection of M = F ·Kg into the endomorphism

algebra of Ag defined over L and V̂p(Ag) ∼= M ⊗ Qp as GL-modules. Since p ≡ 1

(mod 4), p is split in M and so ρg,π |GL
has image lying in a split Cartan subgroup of

GL2(kπ) = GL2(Fp). This implies that in fact ρg,π |GF
has image lying in a split Cartan

subgroup of GL2(Fp). For we know that ρg,π |GF
is abelian [24, Proposition (4.4)] so if

it does not lie in a split Cartan subgroup of GL2(Fp), it must lie in a non-split Cartan

subgroup of GL2(Fp). Therefore ρg,π |GL
lies in the center of GL2(Fp), implying further

that det ρg,π |GL
lies in the subgroup of squares of F×p . However, det ρg,π |GL

= ε−1χp

is surjective to F×p since L does not contain a primitive p-th root of unity for p > 5.

Finally, as [GQ : GF ] = 2 it follows that ρg,π itself has image lying in the normalizer of

a split Cartan subgroup of GL2(Fp) by the classification of subgroups of GL2(Fp). �

6. Conclusion

It would be interesting to see if a few more cases of the generalized Fermat equa-

tion can be handled using Q-curves. Indeed, it would be worthwhile to have a more

conceptual and precise understanding as to which exponents we can expect to resolve

using elliptic curves and what properties these elliptic curves should have (thanks to
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C. Skinner for asking this question and pointing out the references below). In the case

of prime exponents, this was analyzed in [14], and in [10] one has a conceptual starting

point to answer this question.
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